K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

3A=3+3^2+3^3+...+3^100

2A=3A-A=(3+3^2+3^3+....+3^1000-(1+3+3^2+....+3^99) = 3^100-1

=>2A+1 = 3^100 = (3^5)^20 = 243^20

Vậy 2A+1 = 243^20

k mk nha

29 tháng 12 2015

2+2^2+2^3+2^4+...+2^2014 chia hết cho 2 vì toàn số chẵn

2+2^2+2^3+2^4+...+2^2014

=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2013+2^2014)

=2(1+2)+2^3(1+2)+2^5(1+2)+...+2^2013(1+2)

=2.3+2^3.3+2^5.3+...+2^2013.3

=3(2+2^3+2^5+...+2^2013) chia hết cho 3

 

17 tháng 8 2015

A=3+32+33+...+3100

3.A=32+33+34+..+3101

3A-A=3101-3

2A=3101-3

2A+3=3101 ma 2A+3=3n

--> n=101 

6 tháng 10 2023

Ta có công thức tổng quát như sau:

\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)

Áp dụng ta có:

\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\) 

\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)

______

\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)

\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)

_____

\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)

\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)

26 tháng 1 2021

Ta có: \(A=2+2^3+2^5+...+2^{201}\) (Vì sai quy luật dãy nên mình đã sửa lại theo 1 đề khác, nếu cần bạn hãy ib với mình)

\(A=\left(2+2^3+2^5\right)+\left(2^7+2^9+2^{11}\right)+...+\left(2^{193}+2^{195}+2^{197}\right)+2^{199}+2^{201}\)

\(A=42+42\cdot2^6+...+42\cdot2^{192}+2^{199}+2^{201}\)

\(A=42\cdot\left(1+2^6+...+2^{192}\right)+2^{199}+2^{201}\)

Vì \(2^{199}+2^{201}\equiv2+2\equiv1\left(mod.3\right)\)

=> A chia 3 dư 1

26 tháng 1 2021

Xin lỗi bị nhầm đề ạ

Vì \(2^{199}+2^{201}\equiv2+1\equiv3\left(mod.7\right)\)

=> A chia 7 dư 3

26 tháng 12 2021

lớp mấy vậy anh

e có cj học lớp 11

2 tháng 2 2019

bn ấn vào cái hình có chữ M nằm ngang rồi viết lạ đề đc ko bn viết số mũ bn nhấn vào cái có chữ x rồi có cái hình vuông màu xám ở trên chữ x

2 tháng 2 2019

\(a,S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)

\(=\left(1-3+3^2-3^3\right)\left(1+3^4+...+3^{92}+3^{96}\right)\)

\(=-20.\left(1+3^4+...+3^{92}+3^{96}\right)\)là bội của -20

2 tháng 2 2019

b, \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)

\(3S+S=1-3^{100}\)

\(S=\frac{1-3^{100}}{4}\)

Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1