K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right)\dfrac{9}{a+b+c}=9\)

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

21 tháng 6 2020

\(B=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)

\(\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Dễ có:\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\le\left(\frac{3+a+b+c}{3}\right)^3\le8\)

Khi đó \(B\ge\frac{3}{2}\)

Đẳng thức xảy ra tại a=b=c=1

2 tháng 6 2021

`P=a+b+c+1/a+1/b+1/c`

`=a+1/(9a)+b+1/(9b)+c+1/(9c)+8/9(1/a+1/b+1/c)`

Áp dụng BĐT cosi:

`a+1/(9a)>=2/3`

`b+1/(9b)>=2/3

`c+1/(9c)>=2/3`

Áp dụng BĐT cosi schwart

`1/a+1/b+1/c>=9/(a+b+c)>=9`

`<=>8/9(1/a+1/b+1/c)>=8`

`=>P>=2/3+2/3+2/3+8=10`

Dấu "=" xảy ra khi `a=b=c=1/3`

2 tháng 6 2021

Nãy ghi nhầm :v

`P=a+b+c+1/a+1/b+1/c`

`=a+1/(9a)+b+1/(9b)+c+1/(9c)+8/9(1/a+1/b+1/c)`

Áp dụng BĐT cosi:

`a+1/(9a)>=2/3`

`b+1/(9b)>=2/3`

`c+1/(9c)>=2/3`

Áp dụng BĐT cosi schwart

`1/a+1/b+1/c>=9/(a+b+c)>=9`

`<=>8/9(1/a+1/b+1/c)>=8`

`=>P>=2/3+2/3+2/3+8=10`

Dấu "=" xảy ra khi `a=b=c=1/3`

NV
27 tháng 1 2021

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)

\(\Rightarrow3.P\ge9\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

8 tháng 8 2023

Ta có:

\(P=\dfrac{a+3}{a+1}+\dfrac{b+3}{b+1}+\dfrac{c+3}{c+1}\)

\(P=3+2.\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)

\(P\ge3+2.\dfrac{9}{a+b+c+3}=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(min_P=6\), xảy ra khi \(a=b=c=1\)

Y
9 tháng 5 2019

\(A=\left(a+\frac{1}{a}-2\right)+\left(b+\frac{1}{b}-2\right)+\left(c+\frac{1}{c}-2\right)-\left(a+b+c\right)+6\)

\(A=\frac{a^2-2a+1}{a}+\frac{b^2-2b+1}{b}+\frac{c^2-2c+1}{c}-3+6\)

\(A=\frac{\left(a-1\right)^2}{a}+\frac{\left(b-1\right)^2}{b}+\frac{\left(c-1\right)^2}{c}+3\) \(\ge3\forall a,b,c>0\)

A = 3 \(\Leftrightarrow a=b=c=1\)

Vậy min A = 3 \(\Leftrightarrow a=b=c=1\)

9 tháng 5 2019

\(3A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\) (bđt AM-GM)

\(\Rightarrow3A\ge9\Leftrightarrow A\ge3\)

\("="\Leftrightarrow a=b=c=1\)

Ta có : abc = 1 

<=> a = \(\frac{1}{bc}\)

\(b=\frac{1}{ac}\)

\(c=\frac{1}{ab}\)

Ta có : \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(\frac{1}{bc}+abc\right)\left(\frac{1}{ac}+abc\right)\left(\frac{1}{ab}+abc\right)\)

Áp dụng bđt cô si ta có : 

\(\frac{1}{bc}+abc\ge2\sqrt{\frac{abc}{bc}}=2\sqrt{a}\)

\(\frac{1}{ac}+abc\ge2\sqrt{b}\)

\(\frac{1}{ab}+abc\ge2\sqrt{c}\)

Nên : \(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(\frac{1}{bc}+abc\right)\left(\frac{1}{ac}+abc\right)\left(\frac{1}{ab}+abc\right)\)\(\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8.1=8\) 

Vây Pmin = 8 khi a = b = c = 1

13 tháng 5 2018

Hai ô tô cùng khởi hành 1 lúc đi từ

A đến B dài 240km, vì mỗi giờ

ô tô thứ 1 đi nhanh hơn ô tô thứ 2 là 12km nên nó đến trước ô tô thứ 2 là 1h40'. Tí

nh vận tốc của mỗi ô tô?

19 tháng 3 2022

bn cs thể ghi rõ đề đc ko?

21 tháng 4 2018
P=1+a/b+a/c+b/a+1+b/c+c/a+c/b+1 =(a/b+b/a)+(b/c+c/a)+(a/c+c/a)+3 Áp dụng bất đẳng thức Côsi ta có P>=2+2+2+3 P)>=9 khi và chỉ khi a=b=c Quay giá trị nhỏ nhất của p = 9 khi a bằng b bằng c
21 tháng 4 2018

a, \(P=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Áp dụng bdt Cô-si ta có: \(P\ge3+2+2+2=9\)

Dấu "=" xảy ra khi \(a=b=c\)

b, Đặt \(t=\frac{1}{2004y}\)\(\Rightarrow t=\frac{\left(x+2004\right)^2}{2004x}\)

\(=\frac{x^2+2.2004x+2004^2}{2004x}\)

\(=\frac{x}{2004}+2+\frac{2004}{x}\)

Áp dụng bdt Cô-si ta có: \(t=\frac{1}{2004y}\ge2+2=4\)

Dấu "=" xảy ra khi x = 2004

\(\Rightarrow y\le\frac{1}{2004.4}=\frac{1}{8016}\)

Vậy GTLN của y = 1/8016 khi x = 2004