K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: Để B có nghĩa thì \(x^4-10x^2+9< >0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+3\right)\left(x+1\right)< >0\)

hay \(x\notin\left\{3;1;-3;-1\right\}\)

b: \(B=0\) khi \(x^4-5x^2+4=0\)

=>(x-2)(x+2)=0

hay \(x\in\left\{2;-2\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 8

Lời giải:

a. ĐKXĐ: $x\neq \pm 1; \pm 3$

$A=\frac{x^4-5x^2+4}{x^4-10x^2+9}=\frac{(x-1)(x+1)(x-2)(x+2)}{(x-1)(x+1)(x-3)(x+3)}$

$=\frac{(x-2)(x+2)}{(x-3)(x+3)}=\frac{x^2-4}{x^2-9}$
b.

Để $A=0$ thì $x^2-4=0$

$\Leftrightarrow (x-2)(x+2)=0$

$\Leftrightarrow x=\pm 2$ (thỏa mãn) 

c.

$|2x-1|=7$

$\Rightarrow 2x-1=7$ hoặc $2x-1=-7$

$\Rightarrow x=4$ hoặc $x=-3$.

Mà $x\neq \pm 1; \pm 3$ nên $x=4$

Khi đó:

$A=\frac{4^2-4}{4^2-9}=\frac{12}{7}$

19 tháng 12 2020

a) ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

Ta có: \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x^2+10x}\)

\(=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}-\dfrac{5x-50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2x^2-50-5x+50}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)

\(=\dfrac{x^2+5x-x-5}{2\left(x+5\right)}\)

\(=\dfrac{x\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)

\(=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)

\(=\dfrac{x-1}{2}\)

b) Để B=0 thì \(\dfrac{x-1}{2}=0\)

\(\Leftrightarrow x-1=0\)

hay x=1(nhận)

Vậy: Để B=0 thì x=1

Để \(B=\dfrac{1}{4}\) thì \(\dfrac{x-1}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow4\left(x-1\right)=2\)

\(\Leftrightarrow4x-4=2\)

\(\Leftrightarrow4x=6\)

hay \(x=\dfrac{3}{2}\)(nhận)

Vậy: Để \(B=\dfrac{1}{4}\) thì \(x=\dfrac{3}{2}\)

c) Thay x=3 vào biểu thức \(B=\dfrac{x-1}{2}\), ta được:

\(B=\dfrac{3-1}{2}=\dfrac{2}{2}=1\)

Vậy: Khi x=3 thì B=1

d) Để B<0 thì \(\dfrac{x-1}{2}< 0\)

\(\Leftrightarrow x-1< 0\)

\(\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ, ta được: 

\(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)

Vậy: Để B<0 thì \(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)

Để B>0 thì \(\dfrac{x-1}{2}>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để B>0 thì x>1

13 tháng 11 2020

x^4 + x^3 - 3x^2 + x + 2 x^2 -1 x^2 + x - 2 x^4 - x^2 x^3 - 2x^2 + x x^3 -x -2x^2 +2x +2 -2x^2 +2 2x

b, tuong tu 

29 tháng 12 2020

\(A=\frac{4}{x+2}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\)

a) ĐKXĐ : x ≠ ±2

\(=\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}=\frac{x+2}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x-2}\)

b) Để A = 1 => \(\frac{1}{x-2}=1\)=> x - 2 = 1 => x = 3 ( tm )

c) Để A > 1 => \(\frac{1}{x-2}>1\)

=> \(\frac{1}{x-2}-1>0\)

=> \(\frac{1}{x-2}-\frac{x-2}{x-2}>0\)

=> \(\frac{1-x+2}{x-2}>0\)

=> \(\frac{-x+3}{x-2}>0\)

Xét hai trường hợp

1. \(\hept{\begin{cases}-x+3>0\\x-2>0\end{cases}}\Rightarrow\hept{\begin{cases}-x>-3\\x>2\end{cases}}\Rightarrow\hept{\begin{cases}x< 3\\x>2\end{cases}}\Rightarrow2< x< 3\)

2. \(\hept{\begin{cases}-x+3< 0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}-x< -3\\x< 2\end{cases}}\Rightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\)( loại )

Vậy với 2 < x < 3 thì A > 1

d) Để A nguyên => \(\frac{1}{x-2}\)nguyên

=> 1 ⋮ x - 2

=> x - 2 ∈ Ư(1) = { ±1 }

=> x ∈ { 1 ; 3 } thì A nguyên

29 tháng 12 2020

a) \(ĐKXĐ:x\ne\pm2\)

\(A=\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{6-5x}{x^2-4}\)

\(\Leftrightarrow A=\dfrac{4\left(x-2\right)+2\left(x+2\right)+6-5x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\dfrac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\dfrac{1}{x-2}\)

b) Để A = 1

\(\Leftrightarrow\dfrac{1}{x-2}=1\)

\(\Leftrightarrow x-2=1\)

\(\Leftrightarrow x=3\) (tm)

Vậy ...

c) Để A > 1

\(\Leftrightarrow\dfrac{1}{x-2}>1\)

\(\Leftrightarrow\dfrac{1}{x-2}-1>0\)

\(\Leftrightarrow\dfrac{1-x+2}{x-2}>0\)

\(\Leftrightarrow\dfrac{-x+3}{x-2}>0\)

\(\Leftrightarrow\left(3-x\right)\left(x-2\right)>0\)

Trường hợp \(\left\{{}\begin{matrix}3-x>0\\x-2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\)

\(\Leftrightarrow2< x< 3\) (tm)

Trường hợp \(\left\{{}\begin{matrix}3-x< 0\\x-2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>3\\x< 2\end{matrix}\right.\) (ktm)

Vậy ...

d) Để A nguyên 

\(\Leftrightarrow\dfrac{1}{x-2}\in Z\)

\(\Leftrightarrow x-2\inƯ\left(1\right)=\left\{\pm1;\pm2\right\}\)

\(\Leftrightarrow x\in\left\{1;3;0;4\right\}\)

Vậy ...

11 tháng 7 2017

a) \(\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)

= \(\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^3\left(x-1\right)-\left(x-1\right)+2x^2}\)

= \(\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x-1\right)\left(x^3-1\right)+2x^2}\)

= \(\dfrac{\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)+2x^2}\)

= \(\dfrac{\left(x+1\right)^2.\left(x^2-x+1\right)}{\left(x-1\right)^2\left(x^2+x+1\right)+2x^2}\)

Ta thấy mẫu thức của phân thức vốn đã lớn hơn 0 với mọi x, vậy để p/t trên có giá trị bằng 0 thì tử thức phải bằng 0

\(\Rightarrow\left(x+1\right)^2\left(x^2-x+1\right)=0\)

\(\Rightarrow x=-1\)

Vậy x = -1

b) \(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}\)

= \(\dfrac{x^4-x^3+x^3-x^2-4x^2+4}{x^4-x^3+x^3-x^2-9x^2+9}\)

= \(\dfrac{x^3\left(x-1\right)+x^2\left(x-1\right)-4\left(x-1\right)\left(x+1\right)}{x^3\left(x-1\right)+x^2\left(x-1\right)-9\left(x-1\right)\left(x+1\right)}\)

= \(\dfrac{\left(x-1\right)\left(x^3+x^2-4x-4\right)}{\left(x-1\right)\left(x^3+x^2-9x-9\right)}\)

= \(\dfrac{x^3+x^2-4x-4}{x^3+x^2-9x-9}\)

= \(\dfrac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)-9\left(x+1\right)}\)

= \(\dfrac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x-3\right)\left(x+3\right)}\)

= \(\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\) ( ĐKXĐ : \(x\ne\pm3\) )

Để phân thức trên có giá trị bằng 0 thì tử thức phải bằng 0

\(\Rightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) ( thoả mãn điều kiện xác định )

Vậy x = 2 hoặc x = -2

6 tháng 11 2018

a/ \(\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=0\)

\(\Leftrightarrow\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=0\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^3+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{x^2+1}=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x=-1\)

Vậy ...

b/ \(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=0\)

\(\Leftrightarrow\dfrac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}=0\)

\(\Leftrightarrow\dfrac{x^2\left(x^2-1\right)-4\left(x^2-1\right)}{x^2\left(x^2-1\right)-9\left(x^2-1\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x-2\right)\left(x+2\right)}{x^2-9}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy..