Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không vì
a chia 5 dư 3=>a=5.k+3(k là số tự nhiên)
b chia 5 dư 3=> b=5.p+3(p là số tự nhiên)
a+b = 5(k+p)+5+1 chia 5 dư 1(tính chất chia hết của 1 tổng)
=> a+b không chia hết cho 5
học tốt
a+b ko chia hết cho 5 vìnếu ta cộng số dư của a và b được 6>5 mà số dư ko thể lớn hơn số chia nên số dư là 6-5=1
suy ra k chia hết
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
Ta cộng 2 số dư của a và b thì thấy tổng đó chia hết cho 6
Vậy a + b chia hết cho 6
1) a chia 6 dư 2 => a= 6k+2
b chia 6 dư 3 => b= 6k+3
=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6
2) a= 5k+2; b=5k+3
=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)
=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1
=> ab chia 5 dư 1
cho 3 so tu nhien a , b , c mình chỉ cho 3 so tu nhien nho thoy a = 8 ; b = 13 ; c = 12
a ) (a+b+c) : 5 = (8 + 13 + 12) : 5 = 33 : 5 = 6 ( du 3 )
( a + b - c ) : 5 =(8 + 13 - 12 ) : 5 = 9 : 5 = 2 ( du 1)
(a + c - b) : 5 = ( 8 + 12 - 13 ) : 5 =7 : 5 = 1( du 2)
b)2 so co tong chia het cho 5 co 2 so : 8 + 12 va 13 + 12
2 so co hieu chia het cho 3 la co 1 so : 13 - 8
chuc ban hoc tot minh chi hoc lop 5 thoy sai cho nao may ban sua gium minh nha
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Không chia hết cho 5