K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Trí zẹp zai

24 tháng 9 2017

Bùi Thị Thu Hiền làm con mẹ gì vậy?

2 tháng 10 2019

Bài 1: 

Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)

b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)

\(\Rightarrow ab\equiv2\left(mod3\right)\)

Vậy ab chia cho 3 dư 2 

Cách 2: ( hướng dẫn)

a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )

Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh

Bài 2:

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)

2 tháng 10 2019

cảm ơn bạn lê tài bảo châu nhé

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

16 tháng 5 2016

Vì a chia 3 dư 1 nên số a có dạng 3k+1

Số b chia 3 dư 2 nên số b có dạng 3k+2

ab=(3k+1)(3k+2)=9k^2+6k+3k+2

Vi 9k^2, 6k và 3k đều chia hết cho 3 

Nên theo đề ab chia 3 dư 2

16 tháng 5 2016

lời giai cua minh quang tuyet voi 

27 tháng 8 2017

Gọi k là một số nguyên, theo đề ta có: 
a=3k+1 
b=3k+2 
ab=(3k+1)(3k+2)=9k^2+9k+2 
vì 9k^2 và 9k chia hết cho 3 
nên ab chia 3 dư 2

27 tháng 8 2017

cám ơn bạn

12 tháng 7 2015

Ta có : a = 3n+1
b = 3m+2
a.b= 3(3nm+m+2n) +2 số này chia 3 sẽ dư 2.

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

13 tháng 9 2015

ta có a = 3. q + 1 ( q là số tự nhiên) 
b = 3 . p + 2 ( p là số tự nhiên) 
a.b = (3q + 1)(3p + 2) 
= 9qp + 6q + 3p + 2 
tổng trên có 9qp, 6q, 3p đều chia hết cho 3 do đó tổng chia cho 3 dư 2, nghĩa là ab chia cho 3 dư 2.