Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,giả sử (a2;a+b) khác 1
gọi d là ƯCNT của a2;a+b
=>a2 chia hết cho d=>a chia hết cho d
a+b chia hết cho d=>b chia hết cho d
=>(a;b)>1 trái GT
=>(a2;a+b)=1
=>đpcm
c,
,giả sử (ab;a+b) khác 1
gọi d là ƯCNT của ab;a+b
ab chia hết cho d=>a hoặc b chia hết cho d
1 trong 2 số a;b chia hết cho d
mà a+b chia hết cho d
=>số còn lại chia hết cho d
=>(a;b)>1 trái GT
=>(ab;a+b)=1
=>đpcm
Thành ơi, ai nói: a2 chia hết cho d=> a chia hết cho d. Nếu thế thì làm ra từ lâu rồi. VD: 42=16 chia hết cho 8 mà 4 không chia hết cho 8
a)Gọi ƯCLN(a,a+b)=d
=>a chia hết cho d
a+b chia hết cho d
=>a+b-a chia hết cho d
=>b chia hết cho d
=>d=ƯC(a,b)
Vì a và b nguyên tố cùng nhau
=>d=ƯC(a,b)=1
=>ƯCLN(a,a+b)=1
=>a và a+b là nguyên tố cùng nhau
=>ĐPCM
a) Gọi ƯCLN (b;a-b) là d
thì : b chia hết cho d
a-b chia hết cho d
suy ra : a chia hết cho d
suy ra : d thuộc ước chung của a và b
Mà ƯCLN (a,b)=1
ƯC (a,b) = Ư(1)=1
Suy ra d=1
Vậy b và a-b nguyên tố cùng nhau
b) Giả sử a^2 +b^2 và ab không nguyên tố cùng nhau
Khi đó ƯCLN (a^2+b^2 ,ab)=d thuộc N (d khác 1)
Do vậy d chia hết cho p (với p là số nguyên tố)
Suy ra a^2 + b^2 chia hết cho p và ab chia hết cho p
Suy ra a chia hết cho p hoặc b chia hết cho p
TH1:
a chia hết cho p suy ra a^2 chia hết cho p mà a^2 +b^2 chia hết cho p
Suy ra b^2 chia hết cho p. Vậy b chia hết cho p
Suy ra p thuộc ƯC(a,b)
Mà a và b nguyên tố cùng nhau nên p=1
Mà p là số nguyên tố nên p không thể bằng 1. Trường hợp này vô lí
TH2: Làm tương tự như TH1 nhưng đổi thành b chia hết cho p rồi chứng minh TH2 vô lí.
Vậy điều giả sử là sai
Suy ra a^2 +b^2 và ab nguyên tố cùng nhau