Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\)
\(2A=1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\)
\(2A-A=\)\(\left(1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\right)-\)\(\left(\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\right)\)
\(A=1-\left(\frac{1}{2}\right)^{20}\)
a) \(\frac{75^3.3^7}{81^4.5^6}=\frac{5^3.3^3.5^3.3^7}{\left(3^4\right)^4.5^6}=\frac{5^6.3^3.3^7}{3^{16}.5^6}=\frac{3^{10}}{3^{16}}=\frac{1}{3^6}=\frac{1}{729}\)
b) \(\frac{6^6.4^2}{3^{12}.2^8}=\frac{2^6.3^6.\left(2^2\right)^2}{3^{12}.2^8}=\frac{2^6.3^6.2^4}{3^{12}.2^8}=\frac{2^{10}.3^6}{3^{12}.2^8}=\frac{2^2.1}{3^6}=\frac{4}{729}\)
c) \(\frac{34^5.2^5}{2^{14}.17^5}=\frac{2^5.17^5.2^5}{2^{14}.17^5}=\frac{2^{10}}{2^{14}}=\frac{1}{2^4}=\frac{1}{16}\)
\(\left\{{}\begin{matrix}\left(-\dfrac{1}{4}\right)^0=1\\-2\dfrac{1}{3^2}=-2+\dfrac{1}{9}=-\dfrac{19}{9}\\0,5^3=\left(\dfrac{1}{2}\right)^3=\dfrac{1}{8}\\-1\dfrac{1}{3^4}=-1+\dfrac{1}{81}=-\dfrac{80}{81}\end{matrix}\right.\)
\(a=4^5.9^4-2.\dfrac{6^9}{2^{10}}.3^8+6^8.20\)
Đề là như vầy đúng ko bn?
Ta có: \(\frac{a}{b}=\frac{3}{4}\) => \(\frac{a}{3}=\frac{b}{4}\) . Đặt đẳng thức \(\frac{a}{3}=\frac{b}{4}=k\)
=> a = 3k ; b = 4k
=> \(a^2=9k^2\) ; \(b^2=16k^2\)
Lại có: \(A=\frac{a^2+b^2}{a^2-b^2}=\frac{9k^2+16k^2}{9k^2-16k^2}=\frac{25k^2}{-7k^2}=\frac{25}{-7}\)
Vậy A = \(-\frac{25}{7}\)
Chúc bạn học tốt !!
\(\frac{a}{b}=\frac{3}{4}\)
\(A=\frac{a^2+b^2}{a^2-b^b}=\frac{3^2+4^2}{3^2-4^4}=-\frac{25}{247}\)