K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

Ta có : \(\frac{1}{n^2}-1=\frac{1-n^2}{n^2}=\frac{\left(1-n\right)\left(1+1\right)}{n^2}\)

Áp dụng :

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)

\(=\frac{-1.3}{2.2}.\frac{-2.4}{3.3}.\frac{-3.5}{4.4}.....\frac{-2013.2015}{2014.2014}\)

\(=\frac{-\left(1.2.3...2013\right)\left(3.4.5....2015\right)}{\left(2.3.4.....2014\right)\left(2.3.4......2014\right)}=\frac{-2015}{2014.2}=\frac{-2015}{4028}\)

20 tháng 8 2017

Sr còn thiếu

\(A=-\frac{2015}{4028}< \frac{-2014}{4028}=-\frac{1}{2}\)

Vậy \(A< B\)

20 tháng 8 2017

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)\cdot\cdot\cdot\cdot\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)

\(A=\left(\frac{-3}{4}\right)\left(\frac{-8}{9}\right)\left(\frac{-15}{16}\right)\cdot\cdot\cdot\left(\frac{-4052168}{4052169}\right)\left(\frac{-4056195}{4056196}\right)\)

\(A=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot\frac{-3\cdot5}{4\cdot4}\cdot....\cdot\frac{-2012\cdot2014}{2013\cdot2013}\cdot\frac{-2013\cdot2015}{2014\cdot2014}\)

\(A=\frac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot....\cdot\left(-2012\right)\cdot\left(-2013\right)}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\cdot\frac{3\cdot4\cdot5\cdot....\cdot2014\cdot2015}{2\cdot3\cdot4\cdot....\cdot2013\cdot2014}\)

\(A=\frac{-1}{2014}\cdot\frac{2015}{2}=\frac{-2015}{4028}\)

Ta thấy \(\frac{-2015}{4028}< \frac{-1}{2}\) \(\Rightarrow A< B\)

7 tháng 9 2018

Ta có:

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)..\left(\frac{1}{2017^2}-1\right)\)

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{2017^2}-1\right)\)

\(A=\left(-\frac{3}{2^2}\right)\left(\frac{-8}{3^2}\right)\left(\frac{-15}{4^2}\right)...\left(\frac{-\left(1-2017^2\right)}{2017^2}\right)\)
( có 2016 thừa số)

\(A=\frac{3.8.15...\left(1-2017^2\right)}{2^2.3^2.4^2...2017^2}\)

\(A=\frac{\left(1.3\right)\left(2.4\right)...\left(2016.2018\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right)...\left(2017.2017\right)}\)

\(A=\frac{\left(1.2.3....2016\right)\left(3.4.5....2018\right)}{\left(2.3.4...2017\right)\left(2.3.4...2017\right)}\)

\(A=\frac{1.2018}{2017.2}\)

\(A=\frac{1009}{2017}\)

Ta có : \(\frac{1009}{2017}>0\) (vì tử và mẫu cùng dấu)

           \(\frac{-1}{2}< 0\) (vì tử và mẫu khác dấu)

Vậy A>B

20 tháng 9 2015

\(y=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{2014^2}-1\right)\)

\(y=\left(\frac{-1.3}{2.2}\right)\left(\frac{-2.4}{3.3}\right)....\left(\frac{-2013.2015}{2014.2014}\right)\)

\(y=-\left(\frac{1.2....2013.3.4...2015}{2.3....2014.2.3....2014}\right)\)

\(y=-\left(\frac{2015}{2014.2}\right)\)

\(y=\frac{-2015}{4028}\)

\(x=\frac{-1}{2}=\frac{-2014}{4028}\)

Vì \(\frac{-2015}{4028}

28 tháng 9 2016

Ta có \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{2014^2}\right)\)

\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{2014^2-1}{2014^2}\right)\)

\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(2014-1\right)\left(2014+1\right)}{2014^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{2013.2015}{2014.2014}\)

\(=\frac{1.2...2013}{2.3...2014}.\frac{3.4...2015}{2.3...2014}\)

\(=\frac{1}{2014}.\frac{2015}{2}\)

\(=\frac{2015}{2014.2}>\frac{1}{2}\)hay -A>1/2

=>\(A< \frac{-1}{2}\)hay A<B

12 tháng 8 2015

Vì \(\frac{1}{2^2}>0\)

 ............

 \(\frac{1}{2014^2}>0\)

=> A = \(\left(\frac{1}{2^2}\right)\left(\frac{1}{3^2}\right)...\left(\frac{1}{2014^2}\right)>0\)

B = \(-\frac{1}{2}

7 tháng 12 2016

A>1/2

Xin lỗi mình đang bận để lúc khác mình sẽ giải chi tiết