Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right).....\left(\frac{1}{100^2}-1\right)\)
=> \(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{100^2}\right)\)
\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.....\frac{100^2-1}{100^2}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{99.101}{100^2}\)
\(=\frac{1.2....99}{2.3....100}.\frac{3.4....101}{2.3....100}\)
\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
=> \(A=-\frac{101}{200}< -\frac{1}{2}\)
\(A=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{2014^2}-1\right)\)
\(A=\frac{-3}{2^2}\cdot\frac{-8}{3^2}\cdot\frac{-15}{4^2}\cdot...\cdot\frac{-2014^2+1}{2014^2}\)
\(A=\frac{1\cdot\left(-3\right)}{2^2}\cdot\frac{2\cdot\left(-4\right)}{3^2}\cdot\frac{3\cdot\left(-5\right)}{4^2}\cdot...\cdot\frac{2013\cdot\left(-2015\right)}{2014^2}\)
\(A=\frac{1\cdot2\cdot3\cdot...\cdot2013}{2\cdot3\cdot4\cdot...\cdot2014}\cdot\frac{\left(-3\right)\cdot\left(-4\right)\cdot\left(-5\right)\cdot...\cdot\left(-2015\right)}{2\cdot3\cdot4\cdot...\cdot2014}\)
\(A=\frac{1}{2014}\cdot\frac{-2015}{2}\)
\(A=\frac{-2015}{4028}\)
\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}^2\right)\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)
\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left(-1\right)}{\frac{4}{25}\cdot\left(-\frac{125}{1728}\right)}\)
\(=\frac{-\frac{1}{6}}{-\frac{5}{432}}=-\frac{1}{6}:\left(-\frac{5}{432}\right)=\frac{72}{5}\)
\(\left[6.\left(\frac{-1}{3}\right)^2-3.\left(\frac{-1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)
\(=\left[6.\frac{1}{9}-\left(-1\right)+1\right]:\frac{-4}{3}\)
\(=\left[\frac{2}{3}-\left(-1\right)+1\right]:\frac{-4}{3}\)
\(=\frac{8}{3}:\frac{-4}{3}=\frac{-24}{12}=-2\)
~ Hok tốt ~
A=[(1+2+...+100) x (1/2 - 1/3 - 1/4 - 1/5) x (2,4x42 - 21x4,8)] / 1+1/2+1/3+...+1/100
= [(1+2+3+...+100) x (1/2 - 1/3 - 1/4-1/5) x (2,4x2x21 - 21x2x 4,8)] / 1+1/2+1/3+...+1/100
=[(1+2+3+...+100) x (1/2 - 1/3 - 1/4 - 1/5) x 0] / 1+1/2+1/3+...+1/100
=0 / 1+1/2+1/3+...+1/100 = 0