K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: (2,5 điểm)    Cho biểu thức:a) Rút gọn A.b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0c) Tìm x để A = 1/2d) Tìm x nguyên để A nguyên dương.Câu 2: (1điểm)a) Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.b) Cho a < b, so sánh  – 3a +1 với – 3b + 1.HD:          a < b => -3a > -3bCâu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận...
Đọc tiếp

Câu 1: (2,5 đim)    Cho biểu thức:

2016-04-27_171121

a) Rút gọn A.

b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0

c) Tìm x để A = 1/2
d) Tìm x nguyên để A nguyên dương.

Câu 2: (1điểm)

a) Biểu diễn tập nghiệm của mỗi bất phương trình sau trên trục số: x ≥ -1 ;  x < 3.

b) Cho a < b, so sánh  – 3a +1 với – 3b + 1.

HD:          a < b => -3a > -3b

Câu 3: (1,5 điểm) Một người đi xe đạp từ A đến B với vận tốc trung bình 15km/h. Lúc về, người đó chỉ đi với vận tốc trung bình 12km/h, nên thời gian về nhiều hơn thời gian đi là 45 phút. Tính độ dài quãng đường AB (bằng kilômet).

HD: Đổi 45’ = ¾ h, quãng đường AB = S => S = vt hay S/15 = S/12+3/4

2016-04-27_171454

Câu 4:  (1,0 điểm) Cho tam giác ABC có AD là phân giác trong của góc A. Tìm x trong hình vẽ sau với độ dài cho sẵn trong hình. 

2016-04-27_171602

 Câu 5: (1,5 điểm)

a. Viết công thức tính thể tích của hình hộp chữ nhật.

 b. Áp dụng: Tính thể tích của hình hộp chữ nhật với AA’ = 5cm, AB = 3cm, AD = 4cm (hình vẽ trên).

Câu 6:(2,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH.

a) Chứng minh: ∆ABC và ∆HBA đồng dạng với nhau.

 

  b) Chứng minh: AH2 = HB.HC.

  c) Tính độ dài các cạnh BC, AH.

9
29 tháng 4 2016

đây là nick phụ của bạn trần việt hà

29 tháng 4 2016

không phải

30 tháng 10 2018

a) ĐK: \(x\ge0,x\ne1,x\ne\frac{1}{4}\)

\(A=1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right)\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)

\(A=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(A=1+\left[\frac{2\sqrt{x}-1}{1-\sqrt{x}}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(A=1-\sqrt{x}+\frac{x\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

\(A=\frac{x+1}{x+\sqrt{x}+1}\)

Để \(A=\frac{6-\sqrt{6}}{5}\Rightarrow\frac{x+1}{x+\sqrt{x}+1}=\frac{6-\sqrt{6}}{5}\)

\(\Rightarrow5x+5=\left(6-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+6-\sqrt{6}\)

\(\Rightarrow\left(1-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+1-\sqrt{6}=0\)

\(\Rightarrow x-\sqrt{6}.\sqrt{x}+1=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{\sqrt{2}+\sqrt{6}}{2}\\\sqrt{x}=\frac{-\sqrt{2}+\sqrt{6}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\left(tmđk\right)\)

b) Xét \(A-\frac{2}{3}=\frac{x+1}{x+\sqrt{x}+1}-\frac{2}{3}=\frac{3x+3-2x-2\sqrt{x}-2}{3\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x-2\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}\)

Do \(x\ge0,x\ne1,x\ne\frac{1}{4}\Rightarrow\left(\sqrt{x}-1\right)^2>0\)

Lại có \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)+\frac{3}{4}>0\)

Nên \(A-\frac{2}{3}>0\Rightarrow A>\frac{2}{3}\).

31 tháng 3 2016

Câu 1 : 

Đk: \(x\ge1\) 

\(\sqrt{x-1}+\sqrt{2x-1}=5\\ \Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}+2x-1=25\\ \Leftrightarrow2\sqrt{2x^2-3x+1}=27-3x\\ \)

\(\Leftrightarrow\begin{cases}27-3x\ge0\\4\left(2x^2-3x+1\right)=9x^2-162x+729\end{cases}\) \(\Leftrightarrow\begin{cases}x\le9\\x^2-150x+725=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\le9\\x=145hoặcx=5\end{cases}\)

với x= 5 thoản mãn điều kiện, x=145 loại

Vậy \(S=\left\{5\right\}\)

7/  Em sửa lại đề ạ 

Cho hai số thực dương a, b thỏa mãn a+b=4ab

Chứng minh rằng  \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)

Đổi biến \(\left(a,b\right)\rightarrow\left(\frac{1}{x},\frac{1}{y}\right)\)

Từ giả thiết => x+y=4

Ta có: BĐT cần CM tương đương với:

\(\frac{\frac{1}{x}}{\frac{4}{y^2}+1}+\frac{\frac{1}{y}}{\frac{4}{x^2}+1}\ge\frac{1}{2}\)\(\Leftrightarrow\frac{y^2}{x\left(4+y^2\right)}+\frac{x^2}{y\left(4+x^2\right)}\ge\frac{1}{2}\left(1\right)\)

Áp dụng BĐT Schwarz, ta có:
\(\frac{x^2}{y\left(4+x^2\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy^2+x^2y}=\frac{16}{16+xy^2+x^2y}\)

Ta chỉ cần chứng minh:

\(xy^2+x^2y\le16\Leftrightarrow xy^2+x^2y\le\frac{1}{4}\left(x+y\right)^3\)

\(\Leftrightarrow xy^2+x^2y\le x^3+y^3\)(luôn đúng)

Do đó (1) đúng. BĐT được chứng minh. Dấu "=" xảy ra khi x=y=2⇔a=b=\(\frac{1}{2}\)

6. (chuyên Hòa Bình)

Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32

Tìm giá trị nhỏ nhất của\(P=x^2+16y^2+16z^2\)

Áp dụng bất đẳng thức Cauchy cho  ba số dương  x,y,z ta có

\(\hept{\begin{cases}8y^2+\frac{1}{2}x^2\ge2\sqrt{8y^2.\frac{1}{2}x^2}=4xy\\8z^2+\frac{1}{2}x^2\ge2\sqrt{8z^2.\frac{1}{2}x^2}=4xz\\8y^2+8z^2\ge2\sqrt{8y^2.8z^2}=16yz\end{cases}}\)

Cộng từng vế của ba bđt trên ta có

\(P\ge4\left(xy+xz+4yz\right)=4.32=128\)

9 tháng 3 2016

lam nhanh giup minh nha minh se tick cho

9 tháng 3 2016

nhiều bài quá mình chỉ làm được bài 1,3,4,5

bài 2 mình đang suy nghĩ

bạn có thể vào Hỏi đáp Toánđể hỏi bài !

29 tháng 7 2016

cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2013-1=2012\)

29 tháng 3 2016

nhiều quáhuhu

3 tháng 3 2019

a, Ta có: \(\left|x-\dfrac{2}{7}\right|\ge0\forall x\)

\(\Rightarrow\left|x-\dfrac{2}{7}\right|+0,5\ge0,5\forall x\)

Hay: \(A\ge0,5\forall x\)

=> Min A = 0,5 tại \(\left|x-\dfrac{2}{7}\right|=0\Rightarrow x=\dfrac{2}{7}\)

b, \(B=\left|x-5\right|+\left|x-2\right|=\left|x-5\right|+\left|2-x\right|\ge\left|x-5+2-x\right|\) =3

=> Min B = 3 tại \(\left(x-5\right)\left(2-x\right)>0\)

=)) Làm nốt

c,Tương tự b

=.= hk tốt!!

30 tháng 3 2016

a,Nx: (x+1)2008>=0 với mọi x

=>20- (x+1)2008< hoặc = 20

=> GTLN của A là 20 tại (x+1)2008=0

                                    => x+1=0

                                     => x=-1

Vậy GTLN của A là 20

b,Nx: /3-x/> hoặc= 0 với mọi x

=>1010-/3-x/ < hoặc = 0

=>GTLN của B là 1010 tại /3-x/=0

                                     =>3-x=0

                                     =>x=3

c, Nx : (x-1)2 > hoặc = 0 

=> (x-1)+90 > hoặc = 90

=> GTNN của C là 90 tại (x-1)2=0

                                   => x-1=0

                                   => x=1

Vậy GTNN của C là 90

d, Nx: /x+4/> hoặc =0

=> /x+4/ +2015 > hoặc = 2015 với mọi x

=>GTNN của D là 2015 tại /x+4/=0

                                       => x+4=0

                                      => x= -4

Vậy GTNN của D là 2015

30 tháng 3 2016

Ai trả lời giúp e với ạ !

20 tháng 9 2015

hoc24.net giúp em với

26 tháng 2 2016

a) \(4x-7>0\Leftrightarrow4x>7\)\(\Leftrightarrow x>\frac{7}{4}\)

b) \(-5x+8>0\Leftrightarrow5x<8\Leftrightarrow x<\frac{8}{5}\)

c)\(9x-10\le0\Leftrightarrow9x\le10\)\(\Leftrightarrow x\le\frac{10}{9}\)

d) \(\left(x+1\right)^2+4\le x^2+3x+10\)\(\Leftrightarrow x^2-2x+1+4\le x^2+3x+10\)

                                           \(\Leftrightarrow5x\ge-5\Leftrightarrow x\ge-1\)

14 tháng 5 2018

a,

4x - 7 > 0

↔ 4x > 7

↔ x > \(\dfrac{7}{4}\)

Vậy tập nghiệm của bất phương trình là S = { x / x>\(\dfrac{7}{4}\) }

b,

-5x + 8 > 0

↔ 8 > 5x

\(\dfrac{8}{5}\) > x

Vậy tập nghiệm của bất phương trình là S = { x / \(\dfrac{8}{5}\) > x }

c,

9x - 10 ≤ 0

↔ 9x ≤ 10

↔ x ≤ \(\dfrac{10}{9}\)

Vậy tập nghiệm của bất phương trình là S = { x / x ≤ \(\dfrac{10}{9}\) }

d,

( x - 1 )\(^2\) + 4 ≤ x\(^2\) + 3x + 10

↔ x\(^2\) - 2x +1 +4 ≤ x\(^2\) + 3x + 10

↔ 1 + 4 - 10 ≤ x \(^2\) - x\(^2\) + 3x + 2x

↔ -5 ≤ 5x

↔ -1 ≤ x

Vậy tập nghiệm của bất phương trình là S = { x / -1 ≤ x}