K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(sin^2a+cos^2a\right)^3-3\cdot sin^2a\cdot cos^2a\left(sin^2a+cos^2a\right)+3\cdot sin^2a\cdot cos^2a\)

\(=1-3\cdot sin^2a\cdot cos^2a+3\cdot sin^2a\cdot cos^2a\)

=1

29 tháng 8 2018

a, A = 2

b, B = 1

b: \(=\left(\cos^2\alpha+\sin^2\alpha\right)^3-3\cos^2\alpha\sin^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)+3\cdot\sin^2\alpha\cdot\cos^2\alpha\)

=1

NV
5 tháng 12 2021

\(cos^4a-sin^4a+1=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1\)

\(=cos^2a-sin^2a+1=cos^2a-sin^2a+sin^2a+cos^2a\)

\(=2cos^2a\)

\(cos^6a+sin^6a+3sin^2a.cos^2a\)

\(=\left(cos^2a+sin^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)+3sin^2a.cos^2a\)

\(=1-3sin^2a.cos^2a.1+3sin^2a.cos^2a\)

\(=1\)

15 tháng 11 2023

Câu 1:

a: \(A=15\sqrt{4a}+\sqrt{a}-\sqrt{25a}\)

\(=15\cdot2\sqrt{a}+\sqrt{a}-5\sqrt{a}\)

\(=30\sqrt{a}-4\sqrt{a}=26\sqrt{a}\)

b: Sửa đề: Khi a=100

Thay a=100 vào A, ta được:

\(A=26\cdot\sqrt{100}=26\cdot10=260\)

5 tháng 6 2020

\(sin^2a+cos^2a-sin^4a-2cos^2a+sin^2a\)

\(=2sin^2a-cos^2a-sin^4a\)

\(=2sin^2a-cos^2a-\left(\frac{1-cos2a}{2}\right)^2\)

khai triển ra rồi quy đồng lên

\(=\frac{8sin^2a-4cos^2a-1+2cos2a-cos^22a}{4}\)

Mà \(2cos2a=2\left(cos^2a-1\right)=4cos^2-2\)

\(\Rightarrow\frac{8sin^2a-cos^22a-3}{4}\)

Mà \(-cos^22a=sin^22a-1=4sin^2cos^2-1\)

\(\Rightarrow\frac{8sin^2a+4sin^2a.cos^2a-4}{4}\)

\(=\frac{4sin^2a.\left(2-cos^2a\right)-4}{4}\)

\(=sin^2a\left(1+sin^2a\right)-1\)

\(=sin^4a-cos^2a\)

5 tháng 6 2020

viết lại đề đi cậu ơi

11 tháng 9 2017

A= \(\left(\sin^2a\right)^3+\left(cos^2a\right)^3+3sin^2acos^2a\)

=\(\left(sin^2a+cos^2a\right)\left(sin^4a-cos^2asin^2a+cos^4a\right)+3sin^2acos^2a\)

\(sin^4a+2sin^2acos^2a+cos^4a=\left(sin^2+cos^2\right)^2=1^2=1\)

24 tháng 9 2019

( tan2a+cot a)2 _  ( tan a - cot a )2

20 tháng 8 2021

1.
A= \(2\sqrt{6}\) + \(6\sqrt{6}\) - \(8\sqrt{6}\)
A= 0
2.
A= \(12\sqrt{3}\) + \(5\sqrt{3}\) - \(12\sqrt{3}\)
A= 0
3.
A= \(3\sqrt{2}\) - \(10\sqrt{2}\) + \(6\sqrt{2}\)
A= -\(\sqrt{2}\)
4.
A= \(3\sqrt{2}\) + \(4\sqrt{2}\) - \(\sqrt{2}\)
A= \(6\sqrt{2}\)
5.
M= \(2\sqrt{5}\) - \(3\sqrt{5}\) + \(\sqrt{5}\)
M= 0
6.
A= 5 - \(3\sqrt{5}\) + \(3\sqrt{5}\)
A= 5

This literally took me a while, pls sub :D
https://www.youtube.com/channel/UC4U1nfBvbS9y_Uu0UjsAyqA/featured

12 tháng 7 2017

x + 2 x - 3 = x -  x  + 3 x  - 3 =  x  ( x  - 1) + 3( x  - 1) = ( x  - 1)( x  + 3)

a) Với điểu kiện x ≥ 0; x ≠ 1 ta có:

9 tháng 11 2017

Đặt \(\sin^2\alpha=x\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)

\(A=x^3+\left(1-x\right)^3+3x-\left(1-x\right)=x^3+1-3x+3x^2-x^3+3x-1+x=3x^2+x\)

Vậy \(A=3\sin^4\alpha+\sin^2\alpha\). NHỚ NHA!

18 tháng 5 2021

`a)đk:a>0,a ne 9`

`A=((sqrta+3+sqrta-3)/(a-9)).((sqrta-3)/sqrta)`

`=((2sqrtx)/(a-9)).((sqrta-3)/sqrta)`

`=2/(sqrta+3)`

`b)A>1/2`

`<=>2/(sqrta+3)>1/2`

`<=>sqrta+3<4`

`<=>sqrta<1`

`<=>a<1`

KẾt hợp đkxđ:`0<x<1`

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne9\end{matrix}\right.\)

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}-3}+\dfrac{1}{\sqrt{a}+3}\right)\left(1-\dfrac{3}{\sqrt{a}}\right)\)

\(=\dfrac{\sqrt{a}+3+\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\cdot\dfrac{\sqrt{a}-3}{\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}}{\sqrt{a}+3}\cdot\dfrac{1}{\sqrt{a}}\)

\(=\dfrac{2}{\sqrt{a}+3}\)

b) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{2}{\sqrt{a}+3}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{4-\left(\sqrt{a}+3\right)}{2\left(\sqrt{a}+3\right)}>0\)

mà \(2\left(\sqrt{a}+3\right)>0\forall a\)

nên \(1-\sqrt{a}>0\)

\(\Leftrightarrow\sqrt{a}< 1\)

hay a<1

Kết hợp ĐKXĐ, ta được: 0<a<1