Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Để A là phân số thì \(n-3\ne0\)\(\Rightarrow\)\(n\ne3\)
\(b)\) Ta có :
\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để A có giá trị nguyên thì \(4⋮\left(n-3\right)\)\(\Rightarrow\)\(\left(n-3\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Suy ra :
\(n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(4\) | \(2\) | \(5\) | \(1\) | \(7\) | \(-1\) |
Vậy \(n\in\left\{-1;1;2;4;5;7\right\}\) thì A có giá trị nguyên
Chúc bạn học tốt ~
a/Để A là 1 phân số nen n-3 khac 0
Để n-3 khác 0 thì n khác 3
b/A= n+1/n-3 = n-3+4/n-3 = 1+ 4/n-3
Để A có giá trị nguyên thì n-3 thuộc U(4)={-1;-2;-4;1;2;4}
ta có bảng
n-3 1 2 4 -1 -2 -4
n 4 5 7 2 1 -1
Vậy với n thuộc {4;5;7;2;1;-1}thì A nguyên
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để a là phân số thì \(n+4\ne0\Rightarrow n\ne-4\)
b) \(a=\frac{n+9}{n+4}=\frac{n+4+5}{n+4}=1+\frac{5}{n+4}\)
\(a=\frac{1}{2}\Rightarrow1+\frac{5}{n+4}=\frac{1}{2}\)
\(\Rightarrow\frac{5}{n+4}=\frac{1}{2}-1=-\frac{1}{2}\)
\(\frac{5}{n+4}=\frac{5}{-10}\)
\(\Rightarrow n+4=-10\Rightarrow n=-14\)
c) Để a là số nguyên thì \(\frac{5}{n+4}+1\) có giá trị nguyên
\(\Rightarrow\frac{5}{n+4}\) có giá trị nguyên
\(\Rightarrow5⋮n+4\)
Vì \(n+4\inℤ\) nên \(n+4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-3;-5;1;-9\right\}\)
a, để a là phân số thì mẫu số phải khác 0
vây nên n+4 phải khác 0 suy ra n phải khác -4
b, n+9/n+4=1/2 suy ra 2n+18=n+4 suy ra 2n-n=4-18 suy ra n=-14
c, a=n+9/n+4 có g trị nguyên
suy ra n+9 chia hết n+4
suy ra n+4+5 chia hết cho n+4
suy ra 5 chia hết cho n+4 hay n+4 thuộc ư(5)
suy ra n+4 thuộc (1;5;-1;-5)
suy ra n thuộc (-3;1;-5;-9)
chúc bạn hok tốt
a) Để A là phân số thì \(n-3\ne0\)
hay \(n\ne3\)
b) Để A=-1/2 thì \(\dfrac{7}{n-3}=\dfrac{-1}{2}\)
\(\Leftrightarrow-1\left(n-3\right)=14\)
\(\Leftrightarrow n-3=-14\)
hay n=-11(thỏa ĐK)
Vậy: Để A=-1/2 thì n=-11
a) Để A là phân số => n- 3 khác 0
=> n khác 3
Vậy n khác 3 và n thuộc Z
b) Để A có giá trị nguyên => n + 1 chia hết cho n - 3
(n - 3 ) + 4 chia hết cho n - 3
=> 4 chia hết cho n - 3
=. n - 3 thuôc Ư( 4 ) = { 1 ; -1 ; 4 ; -4 ; 2 ; -2 }
=> n thuộc {4 ; 2 ; 7 ; -1 ; 5 ; 1 }
Vậy n thuộc { 4 ; 2 ; 7 ; -1 ; 5 ; 1 }
a: Để A là phân số thì \(2n+4\ne0\)
=>\(2n\ne-4\)
=>\(n\ne-2\)
b: Thay n=0 vào A, ta được:
\(A=\dfrac{3\cdot0-2}{2\cdot0+4}=\dfrac{-2}{4}=-\dfrac{1}{2}\)
Thay n=-1 vào A, ta được:
\(A=\dfrac{3\cdot\left(-1\right)-2}{2\cdot\left(-1\right)+4}=\dfrac{-5}{-2+4}=\dfrac{-5}{2}\)
Thay n=2 vào A, ta được:
\(A=\dfrac{3\cdot2-2}{2\cdot2+4}=\dfrac{4}{8}=\dfrac{1}{2}\)
c: Để A nguyên thì \(3n-2⋮2n+4\)
=>\(6n-4⋮2n+4\)
=>\(6n+12-16⋮2n+4\)
=>\(-16⋮2n+4\)
=>\(2n+4\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(2n\in\left\{-3;-5;-2;-6;0;-8;4;-12;12;-20\right\}\)
=>\(n\in\left\{-\dfrac{3}{2};-\dfrac{5}{2};-1;-3;0;-4;2;-6;6;-10\right\}\)
Giải
a) Các số n thuộc tập hợp Z để A là phân số là:
\(N=\left\{4;5;6;7;8;9;...\right\}\)
b) Vì số nguyên là số chia hết cho 1 và 9 nó , ngoài các không chia hết cho số nào khác. Nếu chia hết cho số nào khác thì số đó gọi là hợp số
Dựa vào số n đã liệt kê ở trên: N = {4 ; 5 ; 6 ; 7 ; 8 ; 9 ...}
Ta thử lần lượt các số:
\(\frac{4+1}{4-3}=\frac{5}{1}=5\)
Thử lần lượt tới số 9 thì ngưng sau đó áp dụng tính chất: Số nguyên là số chia hết cho 1 và 9 nó , ngoài các không chia hết cho số nào khác. Nếu chia hết cho số nào khác thì số đó gọi là hợp số. Đã nêu ở trên.
Vậy .............................
Bạn tth làm cũng không được đúng lắm :'(
\(a)\) Để \(A\) là phân số thì \(n\ne3\) ( vì nếu \(n=3\) thì \(3-3=0\) phân số có mẫu bằng 0 thì ko phải phân số )
\(b)\) Để \(A\) là số nguyên thì : \(\left(n+1\right)⋮\left(n-3\right)\)
Ta có :
\(n+1=n-3+4\) chia hết cho \(n-3\) \(\Rightarrow\) \(4⋮\left(n-3\right)\) \(\Rightarrow\) \(\left(n-3\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Suy ra : ( lập bảng )
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)