\(\frac{1}{^{^{2^2}}}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}+\frac{1}{2016^2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

Ta thấy A = 1/2^2 + 1/3^2 + 1/4^2+...+ 1/2016^2

=> A < 1/(1.2) + 1/(2.3) + 1/(3.4) +....+ 1/(2015.2016)

=> A < 1-1/2+1/2-1/3+1/3-1/4+...+1/2015-1/2016

=> A < 1 - 1/2016 < 1

Mặt khác :1/2^2 > 0

1/3^2 > 0 

1/4^2 > 0

..........

1/2016^2 > 0

=> A > 0

=> 0<A<1

=> A ko phải số tự nhiên

Vậy a ko phải số tự nhiên

Ta có: A > 0 (Vì A gồm các phân số dương)

Ta lại có:

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}_{ }+\frac{1}{2015.2016}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(\Rightarrow A< 1-\frac{1}{2016}< 1\)

\(\Rightarrow A< 1\)

Vì \(0< A< 1\) nên A không phải là số tự nhiên (đpcm)

9 tháng 5 2016

ta thấy 1/2^2;...;1/2016^2 >0=> A>0

lại thấy 1/2^2<1/1.2 ;.....;1/2016^2 < 1/2015.2016

=> A<1

=> 0<A<1 => Ako là stn

 

15 tháng 5 2016

chứng minh 1<A<2 là đc

15 tháng 5 2016

giải hẳn ra đi bạn

9 tháng 8 2016

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(A< 1-\frac{1}{2016}\)

\(A< \frac{2015}{2016}\left(đpcm\right)\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}\)

\(\Rightarrow A< \frac{2015}{2016}\)

A=\(\frac{1}{1^2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{2013^2}\)

A=1+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{2013^2}\)>1

A=1+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{2013^2}\)<1+\(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+...+\(\frac{1}{2012\cdot2013}\)

A<1+1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2012}\)-\(\frac{1}{2013}\)

A<2-\(\frac{1}{2013}\)<2

=>A<2

Vì A>1;A<2=>1<A<2

=>A không phải là STN

 

18 tháng 4 2019

Ta có: \(\frac{1}{2^2}>0\)

           \(\frac{1}{3^2}>0\)

           ................

            \(\frac{1}{100^2}>0\)

\(\Rightarrow A>0\left(1\right)\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

          \(\frac{1}{3^2}< \frac{1}{2.3}\)

           ...................

            \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow0< A< 1\)

Vậy A ko là STN.

18 tháng 4 2019

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

...

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 1\)

Vậy A không phải là một số tự nhiên

16 tháng 5 2016

\(\frac{1}{2^2}>0;\frac{1}{3^2}>0;.....;\frac{1}{2016^2}>0\)

\(=>A=\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2016^2}>0\)  (1)

T có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};......;\frac{1}{2016^2}< \frac{1}{2015.2016}\)

\(=>A< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2015.2016}\)

\(=>A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}< 1\) (2)

Từ (1);(2)

=>0<A<1

=>A ko là số tự nhiên (đpcm)

16 tháng 5 2016

A=\(\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{2016^2}\)

A=\(1+\frac{1}{2^2}+\frac{1}{3^2}+.............+\frac{1}{2016^2}>1\)

A=\(1+\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{2015.2016}\)

A\(< 1+1-\frac{1}{2}+\frac{1}{2}-.......+\frac{1}{2015}-\frac{1}{2016}\)

A\(< 2-\frac{1}{2016}\)

Vì 1< A <2. Vậy A không phải là số tự nhiên

24 tháng 4 2016

Ta có:\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}>0\)

Vì:  \(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}>\frac{1}{2.3}\)

\(\frac{1}{4^2}>\frac{1}{3.4}\)

..........

\(\frac{1}{2012^2}>\frac{1}{2011.2012}\)

\(\Rightarrow A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)

\(\Rightarrow A<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\Rightarrow A<1-\frac{1}{2012}\)

\(\Rightarrow A<1\)

Vì A>0;A<1

=>A không phải số tự nhiên

=>ĐPCM

24 tháng 4 2016

Quy đồng A lên thì tử số chia hết cho 20112 còn mẫu số không chia hết cho 20112 vì có \(\frac{1}{2011^2}\) khi quy đồng thì tử không chia hết cho 20112

Vậy A không phải là số tự nhiên

7 tháng 4 2018

Câu 1 : 

Ta có : 

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(A=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)

\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)

\(A=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)

\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{100^2}\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

Do từ \(2\) đến \(100\) có \(100-2+1=99\) số \(1\) nên : 

\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)< 99\) \(\left(1\right)\)

Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) lại có : 

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

\(\Rightarrow\)\(A=99-B>99-1=98\)

\(\Rightarrow\)\(A>98\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(98< A< 99\)

Vậy A không phải là số nguyên 

Chúc bạn học tốt ~ 

7 tháng 4 2018

Bài 2 a) \(\Rightarrow M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{31}{99}\)