Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B là tên biểu thức
Với mọi n thuộc N*, ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) (*)
Áp dụng (*), ta được:
\(B< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{2013}}\right)=2-\frac{1}{\sqrt{2013}}< 2\)
a.\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}+\sqrt{n}\right)\)
áp dụng công thức cho biểu thức A có A>\(2\left(-\sqrt{2}+\sqrt{26}\right)>7\left(1\right)\)
(so sánh bình phương 2 số sẽ ra nha)
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)
áp dụng công thức cho biểu thức A ta CM được
A<\(2\left(\sqrt{2}-\sqrt{2-1}+\sqrt{3}-\sqrt{3-1}+...+\sqrt{25}-\sqrt{25-1}\right)\)
=\(2\left(-\sqrt{1}+\sqrt{25}\right)=2\left(-1+5\right)=2\cdot4=8\left(2\right)\)
từ (1) và (2) => ĐPCM
b. tương tự câu a ta CM đc BT đã cho=B>\(2\sqrt{51}-2\)> \(5\sqrt{2}\left(1\right)\)
và B<\(2\sqrt{50}=\sqrt{2}\cdot\sqrt{2\cdot50}=10\sqrt{2}\left(2\right)\)
từ (1) và (2)=>ĐPCM
(bạn nhớ phải biến đổi 1 thành 1/\(\sqrt{1}\) trc khi áp dụng công thức nha)
MỜI BẠN THAM KHẢO
2.+ \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\)
\(\Rightarrow2n+1>\sqrt{4n\left(n+1\right)}=2\sqrt{n\left(n+1\right)}\)
+ \(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(A< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)
\(\Rightarrow A< \frac{1}{2}\)
1. + \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{\left(\sqrt{n+1}-\sqrt{n}\right)\cdot2\sqrt{n+1}}{\sqrt{n}\left(n+1\right)}=2\cdot\frac{n+1-\sqrt{n\left(n+1\right)}}{\left(n+1\right)\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Do đó : \(A< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)
\(\Rightarrow A< 2\)
Bài 2 tạm thời chưa nghĩ ra :))
Lời giải:
Bài toán cần bổ sung điều kiện $n\in\mathbb{N}>1$
Quy nạp.
Với $n=2,3$ thì bài toán hiển nhiên đúng
.....
Giả sử bài toán đúng đến $n$. Tức là:
$A_n=\frac{1}{2}.\frac{3}{4}....\frac{2n-1}{2n}< \frac{1}{\sqrt{3n+1}}$
Ta cần chứng minh nó cũng đúng với $n+1$, tức là $A_{n+1}< \frac{1}{\sqrt{3n+4}}$
Thật vậy:
$A_{n+1}=A_n.\frac{2n+1}{2n+2}< \frac{1}{\sqrt{3n+1}}.\frac{2n+1}{2n+2}$
Giờ chỉ cần CM: $\frac{1}{\sqrt{3n+1}}.\frac{2n+1}{2n+2}< \frac{1}{\sqrt{3n+4}}$
$\Leftrightarrow (2n+1)^2(3n+4)< (2n+2)^2(3n+1)$
$\Leftrightarrow -n< 0$ (luôn đúng)
Vậy phép quy nạp hoàn thành. Ta có đpcm.
1/ Ta có:
\(a^5-a^3+a=2\)
Dễ thấy a = 0 không phải là nghiệm từ đó ta có:
\(a^6-a^4+a^2=2a\)
\(\Rightarrow2a=a^6+a^2-a^4\ge2a^4-a^4\ge a^4\)
\(\Rightarrow\hept{\begin{cases}2a\ge a^4\\a>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\ge a^3\\a>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4\ge a^6\\a>0\end{cases}}\)
Dấu = không xảy ra
Vậy \(a^6< 4\)
Câu 2/
Câu hỏi của XPer Miner - Toán lớp 9 - Học toán với OnlineMath
Lời giải:
\(A=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{48}\right)-\left(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)\)
\(=2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{48}\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{24}-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}\right)\)
\(=1-\left(\frac{1}{25}+\frac{1}{26}+...+\frac{1}{49}\right)\)
Chứng minh vế đầu:
Ta thấy:
\(\frac{1}{25}+\frac{1}{26}+...+\frac{1}{49}> \frac{1}{49}+\frac{1}{49}+...+\frac{1}{49}=\frac{25}{49}>\frac{25}{50}=\frac{1}{2}\)
\(\Rightarrow A=1-\left(\frac{1}{25}+\frac{1}{26}+...+\frac{1}{49}\right)< 1-\frac{1}{2}=\frac{1}{2}\) (đpcm)
-------------------------
Vế sau sai, tính cụ thể thì $A< \frac{2}{5}$