K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)] 
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)] 
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1) 
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1 
=> B > A

Dấu "/" nghĩa là phân số nhé

26 tháng 7 2016

Ta có : 

\(A=\frac{10^{11}-1}{10^{12}-1}\)                                                      \(B=\frac{10^{10}+1}{10^{11}+1}\)

\(10A=\frac{10^{12}-10}{10^{12}-1}\)                                               \(10B=\frac{10^{11}+10}{10^{11}+1}\)

\(10A=\frac{10^{12}-1-9}{10^{12}-1}\)                                          \(10B=\frac{10^{11}+1+9}{10^{11}+1}\)

\(10A=1-\frac{9}{10^{12}-1}\)                                           \(10B=1+\frac{9}{10^{11}+1}\)

Ta thấy    \(1-\frac{9}{10^{12}-1}< 1\)  mà   \(1+\frac{9}{10^{11}+1}>1\)

=> A < B

Vậy A < B

Ủng hộ mk nha !!! ^_^

26 tháng 5 2018

 \(10A=\frac{10^{12}-1-9}{10^{12}-1}=\frac{10^{12}-9}{10^{12}}-1\)

\(10B=\frac{10^{11}+1+9}{10^{11}+1}=\frac{10^{11}+9}{10^{11}}+1\)

26 tháng 5 2018

ta có: \(A=\frac{10^{11}-1}{10^{12}-1}\)

\(\Rightarrow10.A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}\)\(=1-\frac{9}{10^{12}-1}< 1\)

ta có: \(B=\frac{10^{10}+1}{10^{11}+1}\)

\(\Rightarrow10.B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}\)\(=1+\frac{9}{10^{11}+1}>1\)

\(\Rightarrow10.A< 10.B\)

\(\Rightarrow A< B\)

6 tháng 3 2018

\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}\)  theo công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)

\(A< \frac{10^{11}+10}{10^{12}+10}=\frac{10^{10}\left(10+1\right)}{10^{11}\left(10+1\right)}=\frac{10^{10}}{10^{11}}\)

\(\Rightarrow\frac{10^{10}}{10^{11}}=\frac{10^{10}\cdot10^{12}}{10^{11}\cdot10^{12}}=\frac{10^{22}}{10^{23}}\)

\(\Leftrightarrow A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}\)

Lại áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)

\(A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}< \frac{10^{11}+1}{10^{12}+1}=B\)

\(\Leftrightarrow A< B\)

6 tháng 3 2018

Hoặc \(A< \frac{10^{11}-1+2}{10^{12}-1+2}=\frac{10^{12}+1}{10^{12}+1}\)

..... (EZ)

1 tháng 2 2017

Ta có :

\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)

\(\Rightarrow A< B\)

1 tháng 2 2017

bài này ko cần cách làm tớ chỉ ra kết quả thui

11 tháng 4 2018

Đề có sai ko bn.  Hình như A phải = 10^11 - 1 / 10^12 - 1

11 tháng 4 2018

ta có :\(A=\frac{10^{11}-1}{10^{12}-1}=\frac{1}{10}=0,1\)

          \(B=\frac{10^{10}+1}{10^{11}+1}=\frac{1}{10}=0,1\)

\(\Rightarrow A=\frac{1}{10}\)và \(B=\frac{1}{10}\)

Vậy \(A=B\)

23 tháng 1 2017

A>b nha!

23 tháng 1 2017

để so sánh A và B ta so sánh 

 \(\frac{10^{11}-1}{10^{12}-1}\)và \(\frac{10^{10}+1}{10^{11}+1}\)

Ta có \(10^{11}-1< 10^{11}+1\)

    và  \(10^{12}-1>10^{11}+1\)

=> A<B

24 tháng 2 2016

b)A=10^11-1/10^12-1

=> A< (10^11-1)+11/(10^12-1)+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)=10^10+1/10^11+1<B

Vậy A<B