Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
a) EFIK là hình thang cân.
b) FK = 1/2 MD.
Giải thích các bước giải:
Ta có: EF là đường TB của tam giác MBC => EF // BC.
IK là đường TB của tam giác ABD => IK // AB
=> EF // IK => EFIK là hình thang.
Ta có: Gọi N là trung điểm của BC ta có EF // NC, EF = NC => EFNC là hình bình hành => FN // EC
IN là đường TB của tam giác BCD => IN // BD.
Mà BD // MC (góc MCA = góc DBC = 60 độ, mà 2 góc này ở vị trí đồng vị).
=> IN // MC
=> F, I, N thẳng hàng.
=> FI // MC.
Mà IK // AC => góc FIK = góc MCA = 60 độ.
CMTT ta có KE // MA. Mà KI // AC
=> góc EKI = góc MAC = 60 độ.
=> EFIK là hình thang cân.
=> EI = KF.
Mà EI là đường TB của tam giác CDM => EI = ½ MD
=> KF = ½ MD.
Xét ∆ CMB có EF là đường trung bình của ∆.
=> EF // MB <=> EF // AB. (1)
Xét ∆ ADM có KI là đường trung bình của ∆.
=> KI // AM <=> KI // AB. (2)
Từ (1);(2) => Tứ giác EFIK là hình thang. (3)
Gọi giao của CM và AD là O.
Xét ∆ COA có EK là đương trung bình ∆.
=> EK // CA.
Lại có KI // AM
Mà CA hợp với AM góc 60 độ (∆ACM đều)
nên EK sẽ hợp với KI góc 60 độ. hay góc EKI = 60 độ.
Chưng minh tương tự với góc FIK. => góc EKI = góc FIK = 60 độ. (4)
Từ (3);(4) => hình thang có 2 góc ở đáy bàng nhau là hình thang cân. => đpcm
Bạn vẽ thêm hình nhé ^_^
dựa vào đâu mà bạn nói EK la đường trung bình của Tam giác COA ?