K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

Ta có:

\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)

Dấu = xảy ra khi .... Làm tiếp nhé

18 tháng 8 2017

ta có: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)=> \(\frac{bx^4+ay^4}{ab}=\frac{\left(x^2+y^2\right)^2}{a+b}\) (vì x^2 +y^2 =1)

=>\(abx^4+b^2x^4+aby^4+a^2y^4\) = \(ab\left(x^4+2x^2y^2+y^4\right)\)

=>\(abx^4+b^2x^4+aby^4+a^2y^4\)   =  \(abx^4+2abx^2y^2+aby^4\)

=> \(b^2x^4-2abx^2y^2+a^2y^4=0\)

=>\(\left(bx^2-ay^2\right)^2=0\)=>\(bx^2=ay^2\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

=> \(\frac{x^{2012}}{a^{1006}}=\frac{1}{\left(a+b\right)^{1006}}\) và \(\frac{y^{2012}}{b^{1006}}=\frac{1}{\left(a+b\right)^{1006}}\)

=>\(\frac{x^{2012}}{a^{1006}}+\frac{y^{2012}}{b^{1006}}=\frac{2}{\left(a+b\right)^{1006}}\)

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

14 tháng 12 2018

\(x^2+y^2=1\Leftrightarrow\frac{^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\)

Theo tính chất tỉ lệ thức

\(\frac{x^2+y^2}{a+b}=\frac{x^2}{a}=\frac{y^2}{b}\left(a;b\ne0\right)\)

\(\frac{x^{2012}}{a^{1006}}+\frac{y^{2012}}{b^{1006}}=\left(\frac{x^2}{a}\right)^{1006}+\left(\frac{y^2}{b}\right)^{1006}=2.\left(\frac{x^2+y^2}{a+b}\right)^{2006}=\frac{2}{\left(a+b\right)^{2006}}\left(đpcm\right)\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

24 tháng 3 2020

\(2x^2+y^2+9=6x+2xy\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\x-y=0\end{cases}}\Leftrightarrow x=y=3\)

\(\Rightarrow A=x^{2019}.y^{2020}-x^{2020}.y^{2019}+\frac{1}{9xy}=\frac{1}{27}\)

27 tháng 7 2016

Bài 4 :

Thay x=y+5 , ta có :

a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65

=(y+5)*(y+7)+y^2-2y-2y^2-10y+65

=y^2+7y+5y+35-y^2-2y-2y^2-10y+65

= 100

Bài 5 :

A = 15x-23y

B = 2x-3y

Ta có : A-B

= ( 15x -23y)-(2x-3y)

=15x-23y-2x-3y

=13x-26y

=13x*(x-2y) chia hết cho 13 

=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại 

22 tháng 8 2016

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(a^2+b^2\right)^2}{a+b}\)
\(\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{\left(x^4+y^4+2x^2y^2\right)}{a+b}\Rightarrow x^4ab+x^4b^2+y^4ab+y^4a^2=x^4ab+y^4ab+2x^2y^2ab\)
\(\Leftrightarrow x^4b^2+y^4a^2-2x^2y^2ab=0\Leftrightarrow\left(x^2b-y^2a\right)^2=0\Leftrightarrow x^2b=y^2a\Leftrightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\)
\(\Rightarrow\frac{x^{2010}}{a^{1006}}+\frac{y^{2012}}{b^{1006}}=\frac{2\left(x^2+y^2\right)^{1006}}{\left(a+b\right)^{1006}}=\frac{2}{\left(a+b\right)^{1006}}\)
 

22 tháng 8 2016

Nếu để ý thì bài này dùng coossi sờ vác ngay bước đầu sẽ ngắn đi rất nhiều 

28 tháng 2 2021

Áp dụng cosi

`1/x^2+1/y^2>=2/(xy)`

`=>1/2>=2/(xy)`

`=>xy>=4`

Aps dụng cosi

`=>x+y>=2\sqrt{xy}=2.2=4`

Dấu "=" xảy ra khi `x=y=4`

Có : \(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2\sqrt{\dfrac{1}{x^2}\cdot\dfrac{1}{y^2}}=\dfrac{2}{xy}\)

\(\Rightarrow xy\ge4\)

Ta có : \(A=x+y\ge2\sqrt{xy}=2\sqrt{4}=4\)

Dấu "=" xảy ra khi \(x=y=2\)

Vậy min A = 4 khi $x=y=2$