Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất bằng 1. Vì a và b là 2 số nguyên tố cùng nhau nên ƯCLN(a ; b) = 1
b) Gọi d là ƯCLN(2n + 5 ; 3n + 7)
Vì d là ƯCLN(2n + 5 ; 3n + 7) nên :
2n + 5 chia hết cho d => (2n + 5) x 3 = 6n + 15 chia hết cho d
3n + 7 chia hết cho d => (3n + 7) x 2 = 6n + 14 chia hết cho d
Hiển nhiên 2 số liên tiếp có ước chung lớn nhất là 1. Mà 6n + 15 và 6n + 14 là 2 số liên tiếp nên 6n + 15 và 6n + 14 có ước chung lớn nhất là 1 => d = 1 ( không có d lớn hơn hay nhỏ hơn ngoài d = 1)
Mà d là ƯCLN(2n + 5 ; 3n + 7) nên 1 là ƯCLN(2n + 5 ; 3n + 7) nên 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau
K NHA BẠN IU
Câu 1:
=>n(n+1)=1275
=>n^2+n-1275=0
=>\(n\in\varnothing\)
Câu 2:
a: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
b: Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hết cho d
=>1 chia hết cho d
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
a) Gọi d là ƯC( 7n + 10 ; 5n + 7 )
=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d
=> 35n + 50 - 35n - 49 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1
=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )
b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d
=> 4n + 8 - 4n - 6 chia hết cho d
=> 2 chia hết cho d
=> d ∈ { 1 ; 2 }
Với d = 2 => \(2n+3⋮̸̸d\)
=> d = 1
=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1
=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )
Gọi UCLN(2n+3;3n+1) là a(a thuộc N)
Ta có:2n+3 chia hết cho a
3n+1 chia hết cho a
=>3(2n+3)chia hết cho a
2(3n+1) chia hết cho a
=>6n+9 chia hết cho a
6n+2 chia hết cho a
=>6n+9-(6n+2)chia hết cho a
7 chia hết cho a
a thuộc Ư(7)={1;7}
Vì a và b không phải là 2 số nguyên tố cùng nhau nên UCLN(2n+3;3n+1)=7
mình nhé bạn!
Bài 1
a,
Gọi d là ƯCLN(6n+5;4n+3)
\(\Rightarrow\hept{\begin{cases}6n+5⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(6n+5\right)⋮d\\3\left(4n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+10⋮d\\12n+9⋮d\end{cases}}}\)
\(\Rightarrow12n+10-\left(12n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\) d=1 hay ƯCLN (6n+5;4n+3) =1
Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau
b, Vì số nguyên dương nhỏ nhất là số 1
=> x+ 2016 = 1
=> x= 1-2016
x= - 2015
Đặt \(6n+5;4n+3=d\left(d\inℕ^∗\right)\)
\(6n+5⋮d\Rightarrow12n+10⋮d\)
\(4n+3⋮d\Rightarrow12n+9⋮d\)
Suy ra : \(12n+10-12n-9⋮d\)hay \(1⋮d\)
Vậy ta có đpcm
Gọi ƯCLN (4n+3;5n+1) = d ( d thuộc N sao )
=> 4n+3 và 5n+1 đều chia hết cho d
=> 5.(4n+3) và 4.(5n+1) chia hết cho d
=> 20n+15 và 20n+4 đều chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1;11}
Mà a và b ko phải 2 số tự nhiên nguyên tố cùng nhau nên d khác 1
=> d = 11
=> ƯCLN (a,b) =11
Tk mk nha
Ta có; 4n+3=> 5.[4n+3]=>20n+15 Gọi UCLN(a, b) là d
5n+1=>4.[5n+1]=> 20n+4
=>d= [20n+15 ] - [ 20n+4] chia hết cho 11
=>d=11 [ vì a,b là 2 số thuộc N ko nguyên tố cùng nhau]