K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

\(\sqrt{3}.M\)=\(a\sqrt{3b\left(a+2b\right)}+b\sqrt{3a\left(b+2a\right)}\)

Ap dụng bđt cosi :

\(\sqrt{3}\)M≤\(a.\left(\dfrac{5b+a}{2}\right)+b.\left(\dfrac{5a+b}{2}\right)=\dfrac{10ab+a^2+b^2}{2}\)

ta có a^2+b^2≥2ab. mà a^2+b^2≤2=>10ab≤10

=>\(\sqrt{3}\)M≤6=>M≤2\(\sqrt{3}\)

17 tháng 5 2018

mik k hiểu cho lắm

bạn giải thích từ chỗ dùng cosi đc k

1 tháng 6 2019

Ta có \(\sqrt{3b\left(a+2b\right)}\le\frac{1}{2}\left(3b+a+2b\right)=\frac{1}{2}\left(a+5b\right)\)

        \(\sqrt{3a\left(b+2a\right)}\le\frac{1}{2}\left(5a+b\right)\)

=> \(P\le\frac{1}{2}\left(a^2+b^2+10ab\right)\)

Mà \(ab\le\frac{1}{2}\left(a^2+b^2\right)\le\frac{1}{2}.2=1\)

=> \(P\le\frac{1}{2}\left(2+10\right)=6\)

Vậy MaxP=6 khi a=b=1

2 tháng 6 2019

Cảm ơn bạn Trần Phúc Khang ạ.

14 tháng 12 2019

có cả mấy bất đẳng thức đó hả

bn viết công thức tổng quát ra cho mk vs

mk thanks

2 tháng 2 2020

Bai nay co rat nhieu trong chtt .

3 tháng 3 2020

Nè bạn :) 

Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)

\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)

\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)

Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)

\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)

15 tháng 10 2016

Ta có \(2=a^2+b^2\ge2ab\)

\(\Leftrightarrow ab\le1\)

\(M\le\sqrt{\left(a^2+b^2\right)\left(36ab+45b^2+36ab+45a^2\right)}\)

\(=\sqrt{2\left(72ab+90\right)}\)\(\le\sqrt{2\left(72+90\right)}=\sqrt{324}=18\)

GTLN là 18 đạt được khi a = b = 1

7 tháng 1 2018

\(\sqrt{a^2+2ac+2ab+4bc}\) + \(\sqrt{b^2+2bc+2ab+4ac}\) + \(\sqrt{c^2+2bc+2ac+4ab}\) =3

Haizzz mọi người ra chưa?

11 tháng 12 2019

bạn ơi đến thế thì làm thế nào