Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\sqrt{3b\left(a+2b\right)}\le\frac{1}{2}\left(3b+a+2b\right)=\frac{1}{2}\left(a+5b\right)\)
\(\sqrt{3a\left(b+2a\right)}\le\frac{1}{2}\left(5a+b\right)\)
=> \(P\le\frac{1}{2}\left(a^2+b^2+10ab\right)\)
Mà \(ab\le\frac{1}{2}\left(a^2+b^2\right)\le\frac{1}{2}.2=1\)
=> \(P\le\frac{1}{2}\left(2+10\right)=6\)
Vậy MaxP=6 khi a=b=1
có cả mấy bất đẳng thức đó hả
bn viết công thức tổng quát ra cho mk vs
mk thanks
Nè bạn :)
Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)
\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)
\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)
Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)
\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)
\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)
Ta có \(2=a^2+b^2\ge2ab\)
\(\Leftrightarrow ab\le1\)
\(M\le\sqrt{\left(a^2+b^2\right)\left(36ab+45b^2+36ab+45a^2\right)}\)
\(=\sqrt{2\left(72ab+90\right)}\)\(\le\sqrt{2\left(72+90\right)}=\sqrt{324}=18\)
GTLN là 18 đạt được khi a = b = 1
\(\sqrt{a^2+2ac+2ab+4bc}\) + \(\sqrt{b^2+2bc+2ab+4ac}\) + \(\sqrt{c^2+2bc+2ac+4ab}\) =3
Haizzz mọi người ra chưa?
\(\sqrt{3}.M\)=\(a\sqrt{3b\left(a+2b\right)}+b\sqrt{3a\left(b+2a\right)}\)
Ap dụng bđt cosi :
\(\sqrt{3}\)M≤\(a.\left(\dfrac{5b+a}{2}\right)+b.\left(\dfrac{5a+b}{2}\right)=\dfrac{10ab+a^2+b^2}{2}\)
ta có a^2+b^2≥2ab. mà a^2+b^2≤2=>10ab≤10
=>\(\sqrt{3}\)M≤6=>M≤2\(\sqrt{3}\)
mik k hiểu cho lắm
bạn giải thích từ chỗ dùng cosi đc k