Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=a-b,y=b-c,z=c-a\to x+y+z=0.\) Ta có
\(\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5=x^5+y^5+z^5=x^5+y^5+\left(-x-y\right)^5=x^5+y^5-\left(x+y\right)^5.\)
Mà \(\left(x+y\right)^5=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5,\) suy ra
\(\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=-\left(5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)=5xyz\left(x^2+xy+y^2\right)\vdots5xyz=5\left(a-b\right)\left(b-c\right)\left(c-a\right).\)
Suy ra điều phải chứng minh.
Đặt \(p=2k+1\)( phụ chú : vì p là số nguyên tố lẻ )
\(x=a-b-c\)
\(y=b-c-a\)
\(z=c-a-b\)
\(\Rightarrow-\left(x+y+z\right)=a+b+c\)
\(\Rightarrow B=x^{2k+1}+y^{2k+1}+z^{2k+1}-\left(x+y+z\right)^{2k+1}\)
\(=\left(x^{2k+1}+y^{2k+1}\right)-\left[\left(x+y+z\right)^{2k+1}-z^{2k+1}\right]\)
\(=\left(x+y\right)\left(x^{2k}-x^{2k-1}y+....+y^{2k}\right)-\left(x+y\right)\left[\left(x+y+z\right)^{2k}+\left(x+y+z\right)^{2k-1}z+...+z^{2k}\right]\)chia hết cho \(x+y=-2c\)
\(\Rightarrow B\text{⋮}c\)
Tiếp, lại có :
\(B=x^{2k+1}+y^{2k+1}+z^{2k+1}-\left(x+y+z\right)^{2k+1}\)
\(=\left(x^{2k+1}+z^{2k+1}\right)-\left[\left(x+y+z\right)^{2k+1}-y^{2k+1}\right]\)
\(=\left(x+z\right)\left(x^{2k}-x^{2k-1}z+...+z^{2k}\right)-\left(x+z\right)\left[\left(x+y+z\right)^{2k}+\left(x+y+z\right)^{2k-1}y+...+y^{2k}\right]\)chia hết cho \(x+z=-2b\)
\(\Rightarrow B\text{⋮}b\)
CMTT, có \(B\text{⋮}a\)
Mà \(a,b,c\)đôi một nguyên tố cùng nhau ( GT )
\(\Rightarrow B\text{⋮}abc\)
Vậy ...