K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

Ta có: b2=ac\(\Rightarrow\frac{b}{c}=\frac{a}{b}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{2016.b}{2016.c}\)(1)

áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{a}{b}=\frac{2016.b}{2016.c}=\frac{a+2016.b}{b+2016.c}\)(2)

Từ (1) và (2) ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{a+2016.b}{b+2016.c}\)

\(\Rightarrow\frac{\left(a+2016.b\right)^2}{\left(b+2016.c\right)^2}=\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}\)(vì \(\frac{a}{b}=\frac{b}{c}\))\(=\frac{a}{c}\)(điều phải chứng minh)

31 tháng 12 2016

Công dãy lại => hệ số : \(k=2014\)

Cách đơn giảii không hiệu quả, Thế lại=> a,b,c thay vào ra A

16 tháng 12 2017

ADTCCDTSBN,TC :

\(\frac{2016c-a-b}{c}=\frac{2016b-a-c}{b}=\frac{2016a-b-c}{a}\)

\(=\frac{\left(2016c-a-b\right)+\left(2016b-a-c\right)+\left(2016a-b-c\right)}{c+b+a}=\frac{2014.\left(a+b+c\right)}{a+b+c}=2014\)

\(\frac{2016c-a-b}{c}=2014\Rightarrow2016c-a-b=2014c\Rightarrow2c=a+b\)( 1 )

\(\frac{2016b-a-c}{b}=2014\Rightarrow2016b-a-c=2014b\Rightarrow2b=a+c\)( 2 )

\(\frac{2016a-b-c}{a}=2014\Rightarrow2016a-b-c=2014a\Rightarrow2a=b+c\)( 3 )

Từ ( 1 ), ( 2 ) và ( 3 ) \(\Rightarrow\)a = b = c

\(\Rightarrow A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)+\left(1+1\right)=2^3=8\)

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

20 tháng 10 2019

Đề bài phải thêm là \(\frac{a}{b}=\frac{c}{d}\) nhé.

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{2015a}{2015c}=\frac{2016b}{2016d}.\)

\(\Rightarrow\frac{2016a}{2016c}=\frac{2017b}{2017d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{2015a}{2015c}=\frac{2016b}{2016d}=\frac{2015a-2016b}{2015c-2016d}\) (1)

\(\frac{a}{c}=\frac{2016a}{2016c}=\frac{2017b}{2017d}=\frac{2016a+2017b}{2016c+2017d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{2015a-2016b}{2015c-2016d}=\frac{2016a+2017b}{2016c+2017d}.\)

\(\Rightarrow\frac{2015a-2016b}{2016c+2017b}=\frac{2015c-2016d}{2016c+2017d}\left(đpcm\right).\)

Câu a) mình nghĩ phải chứng minh như thế.

Chúc bạn học tốt!


20 tháng 10 2019

mk vt thiếu \(\frac{a}{b}=\frac{c}{d}\)

22 tháng 12 2016

+ Nếu a+b+c=0 => a+b=-c; a+c=-b; b+c=-a

A = (1 + a/b)(1 + b/c)(1 + c/a)

A = a+b/b . (b+c/c) . (c+a/a)

A = -c/b . (-a/c) . (-b/a)

A = -1

+ Nếu a+b+c khác 0

Áp dụng t/c của dãy tỉ số = nhau ta có:

2016c-b-a/c = 2016b-a-c/b = 2016a-b-c/a

= (2016c-b-a)+(2016b-a-c)+(2016a-b-c)/a+b+c

= 2015(a+b+c)/a+b+c = 2015

=> 2015c = 2016c-b-a; 2015b=2016b-a-c; 2015a = 2016a-b-c

=> c-b-a=0; b-a-c=0; a-b-c=0

=> c=a+b; b=a+c; a=b+c

A = a+b/b . (b+c/c) . (c+a/a)

A = c/b . a/c . b/a = 1

Bài 1Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)Chững minh c=0Bài 2Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)Chững minh a + b+ c+ d = 0Bài 3Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)Bài 4Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thứcBài...
Đọc tiếp

Bài 1
Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chững minh c=0

Bài 2

Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

Chững minh a + b+ c+ d = 0

Bài 3

Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)

Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Bài 4

Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)

Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thức

Bài 5

Cho \(\left(x1P-y1Q\right)^{2n}+\left(x2P+y2Q\right)^{2m}+...+\left(xkP-ykQ\right)^{2k}\le0\left(n,m,...,k\inℕ^∗;P,Q\ne0\right)\)

Chứng minh rằng \(\frac{x1+x2+x3+...+xk}{y1+y2+y3+...+yk}\)

Bài 6

Biết rằng \(\hept{\begin{cases}a1^2+a2^2+a3^2=P^2\\b1^2+b2^2+b3^2=Q^2\end{cases}}\) và \(a1\cdot b1+a2\cdot b2+a3\cdot b3=P\cdot Q\)

Chứng minh \(\frac{a1}{b1}=\frac{a2}{b2}=\frac{a3}{b3}=\frac{P}{Q}\)

Bài 7

Cho 4 số a, b, c, d khác 0 thảo mãn \(\left(ad+bc\right)^2=4abcd\)

Chững minh rằng 4 số a, b, c ,d có thê rlaapj thành 1 tỉ lệ thức

Bài 8

Cho các số a, b, c thảo mãn \(\frac{a}{2010}=\frac{b}{2011}=\frac{c}{2012}\)

a. Tính \(M=\frac{2a-3b+c}{2c-3b}\)

b. Chứng minh rằng \(a\cdot\left(a-b\right)\cdot\left(b-c\right)=\left(a-c\right)^2\)

0