K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)

Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)

=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)

=>a2+b2+c2 \(\le\)

Dấu "=" xảy ra <=> (a+1)(  a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị 

NV
19 tháng 4 2021

Ta có:

\(ab.bc.ca=\left(abc\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Rightarrow\) Luôn tồn tại ít nhất 1 trong 3 giá trị ab; bc; ca không âm

Không mất tính tổng quát, giả sử \(ab\ge0\)

\(\Rightarrow a^2+b^2+c^2\le a^2+2ab+b^2+c^2=\left(a+b\right)^2+c^2=2c^2\le2\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(-1;0;1\right)\) và các hoán vị

2 tháng 11 2018

\(DPCM\Leftrightarrow P=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\le\frac{108}{529}\)

Ta có: \(0\le a\le b\le c\le1\Rightarrow a^2\left(b-c\right)\le0\left(1\right)\)

\(b^2\left(c-b\right)=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)\le4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4c^3}{27}\)

\(\Rightarrow P\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2\left(1-\frac{23c}{27}\right)=\frac{23c}{54}.\frac{23c}{54}\left(1-\frac{23c}{27}\right).\frac{54^2}{23^2}\)

2 tháng 11 2018

Tiếp

\(\le\left(\frac{\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}}{3}\right)^3.\frac{54^2}{23^2}=\frac{1}{27}.\frac{54^2}{23^2}=\frac{108}{529}\)

Dấu bằng xảy ra\(\Leftrightarrow\hept{\begin{cases}a^2\left(b-c\right)=0\\\frac{b}{2}=c-b\\\frac{23c}{54}=1-\frac{23c}{27}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=\frac{2}{3}c\\c=\frac{18}{23}\end{cases}}\)

1 tháng 4 2020

đặt \(t=ab+bc+ca\)

\(=>t=ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\)

mặt khác 

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=>a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\)

khi đó 

\(P=\frac{9-2t}{t}\)(zới t nhỏ hơn hoặc = 3)

xét \(f\left(t\right)=\frac{9-2t}{t}\left(t\le3\right)\)

\(f'\left(t\right)=-\frac{9}{t^2}< 0\)

=> f(t) N Biến \(\left(-\infty,3\right)\)

min f(t)=f(3)=1

koo tồn tại max\(f\left(t\right)\)

zậy minP=1 khi a=b=c=1

7 tháng 8 2016

Vì vai trò bình đẳng của các ẩn  \(a,b,c\)  là như nhau nên không mất tính tổng quát, ta có thể giả sử:

\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do  \(a,b,c\)  đôi một khác nhau nên cũng không đồng thời bằng nhau)

Áp dụng bđt  \(AM-GM\)  cho từng bộ số gồm có các số không âm, ta có:

\(\left(i\right)\)  Với  \(\frac{1}{\left(a-b\right)^2}>0;\)  \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\)  \(\left(1\right)\)

\(\left(ii\right)\) Với  \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)

 \(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\)  \(\left(2\right)\)

\(\left(iii\right)\)  Với  \(\frac{1}{\left(c-a\right)^2}>0;\)  \(\frac{c-a}{16}>0\)

\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)

\(\Rightarrow\)  \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\)  \(\left(3\right)\)

Cộng từng vế ba bất đẳng thức  \(\left(1\right);\)  \(\left(2\right)\)  và   \(\left(3\right)\)  , ta được:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)

nên   \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)

Mặt khác, từ  \(\left(\alpha\right)\)  ta suy ra được:  \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)

nên   \(a+2\ge c\) hay nói cách khác  \(a-c\ge-2\)

Do đó,  \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(\hept{\begin{cases}a=0\\b=1\\c=2\end{cases}}\)  (thỏa mãn  \(\left(\alpha\right)\)  )

7 tháng 8 2016

Vì vai trò bình đẳng của các ẩn  \(a,b,c\)  là như nhau nên không mất tính tổng quát, ta có thể giả sử:

\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do  \(a,b,c\)  đôi một khác nhau nên cũng không đồng thời bằng nhau)

Áp dụng bđt  \(AM-GM\)  cho từng bộ số gồm có các số không âm, ta có:

\(\left(i\right)\)  Với  \(\frac{1}{\left(a-b\right)^2}>0;\)  \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\)  \(\left(1\right)\)

\(\left(ii\right)\) Với  \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)

 \(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\)  \(\left(2\right)\)

\(\left(iii\right)\)  Với  \(\frac{1}{\left(c-a\right)^2}>0;\)  \(\frac{c-a}{16}>0\)

\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)

\(\Rightarrow\)  \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\)  \(\left(3\right)\)

Cộng từng vế ba bất đẳng thức  \(\left(1\right);\)  \(\left(2\right)\)  và   \(\left(3\right)\)  , ta được:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)

nên   \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)

Mặt khác, từ  \(\left(\alpha\right)\)  ta suy ra được:  \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)

nên   \(a+2\ge c\) hay nói cách khác  \(a-c\ge-2\)

Do đó,  \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(a=0;b=1;c=2\)  (thỏa mãn  \(\left(\alpha\right)\)  )

13 tháng 11 2019

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nên ta cần CM \(a^2+b^2+c^2+ab+bc+ac\ge a^3+b^3+c^3\)

Theo đề bài ta có

\(a\left(a-1\right)\left(a-2\right)\le0\)=> \(a^3\le3a^2-2a\)

Tương tự với b,c => \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\left(a-2\right)\left(b-2\right)\ge0\)=> \(ab\ge2\left(a+b\right)-4\)

Tương tự => \(ab+bc+ac\ge4\left(a+b+c\right)-12\)

Khi đó BĐT <=>

\(a^2+b^2+c^2+4\left(a+b+c\right)-12\ge3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

<=> \(3\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)-6\)

<=>\(\left(a-1\right)\left(a-2\right)+\left(b-1\right)\left(b-2\right)+\left(c-1\right)\left(c-2\right)\le0\)(luôn đúng với giả thiết)

Dấu bằng xảy ra khi \(\left(a,b,c\right)=\left(2;2;2\right),\left(2;2;1\right),....\)và các hoán vị

17 tháng 2 2020

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Nên \(BĐT\Leftrightarrow a^2+b^2+c^2+ab+bc+ca\ge a^3+b^3+c^3\)

Ta có \(a\left(a-2\right)\left(a-1\right)\le0\Leftrightarrow a^3\le3a^2-2a\)

Tương ta ta có: \(b^3\le3b^2-2b;c^3\le3c^2-2c\)

Cộng từng vế của các bđt trên: \(a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\Leftrightarrow a^3+b^3+c^3\le a^2+b^2+c^2+ab+bc+ca\)

\(+2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)

Đặt \(\)\(K=2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\left(a+b+c\right)\)

Ta lại có 

\(\left(a-1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le3a-2\)

Tương tự \(b^2\le3b-2;c^2\le3c-2\)

\(\Rightarrow a^2+b^2+c^2\le3\left(a+b+c\right)-6\)(1)

\(\left(a-2\right)\left(b-2\right)\ge0\Leftrightarrow ab\ge2a+2b-4\)

Tương tự \(bc\ge2b+2c-4;ca\ge2c+2a-4\)

\(\Rightarrow ab+bc+ca\ge4\left(a+b+c\right)-12\)(2)

Từ (1) và (2) suy ra \(K\le6\left(a+b+c\right)-12-2\left(a+b+c\right)\)

\(-\left[4\left(a+b+c\right)-12\right]=0\)

\(K\le0\Rightarrow a^3+b^3+c^3\le3\left(a^2+b^2+c^2\right)-2\left(a+b+c\right)\)

\(\le a^2+b^2+c^2+ab+bc+ca\)

hay \(\text{Σ}_{cyc}a^2+\text{Σ}_{cyc}ab+3\text{Σ}_{cyc}\left(a+b\right)\ge\left(a+b+c\right)^3\)

Đẳng thức xảy ra khi \(\left(a,b,c\right)\in\left(2;2;1\right)\)và các hoán vị hoặc \(a=b=c=2\)

31 tháng 7 2019

1. BĐT ban đầu

<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)

<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)

Áp dụng BĐT buniacoxki dang phân thức 

=> BĐT cần CM

<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)

<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng 

=> BĐT được CM

31 tháng 7 2019

2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)

ko mất tính tổng quát giả sử \(a\ge b\ge c\)

Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)

=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

19 tháng 5 2017

Vì \(0\le a,b,c\le1\Rightarrow\hept{\begin{cases}a^2\left(1-b\right)\le a\left(1-b\right)\\b^2\left(1-c\right)\le b\left(1-c\right)\\c^2\left(1-a\right)\le c\left(1-a\right)\end{cases}}\)

\(\Rightarrow a^2+b^2+c^2-\left(a^2b+b^2c+c^2a\right)\le a+b+c-\left(ab+bc+ca\right)\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+ab+bc+ca\)

\(\Rightarrow\left(a^2b+b^2c+c^2a\right)+\left(ab+bc+ca\right)+\left(a+b+c\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Rightarrow VT\ge\left(a+b+c\right)^2-\left(a+b+c\right)=\left(a+b+c\right)\left(a+b+c-1\right)\)

Do \(a+b+c\ge2\Rightarrow a+b+c-1\ge1\Rightarrow VT\ge2\)

Đẳng thức xảy ra khi 1 trong 3 số a,b,c có 2 số bằng 1 và 1 số bằng 0

19 tháng 5 2017

bạn thử giải hộ mình mấy bài này vs

https://diendantoanhoc.net/topic/173087-to%C3%A1n-%C3%B4n-thi-v%C3%A0o-l%E1%BB%9Bp-10/#entry681162