K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2020

Đặt \(a=x+y;b=y+z;c=z+x\)

Thì bài toán trở thành \(\frac{x+y}{2\left(2x+y\right)}+\frac{y+z}{2\left(2y+z\right)}+\frac{z+x}{2\left(2z+x\right)}\ge1\)

\(< =>3-\frac{x}{2\left(2x+y\right)}-\frac{y}{2\left(2y+z\right)}-\frac{z}{2\left(2z+x\right)}\ge1\)

\(< =>\frac{x}{2x+y}+\frac{y}{2y+z}+\frac{z}{2z+x}\le1\)

\(< =>\frac{2x}{2x+y}+\frac{2y}{2y+z}+\frac{2z}{2z+x}\le2\)

\(< =>3-\frac{y}{2x+y}-\frac{z}{2y+z}-\frac{x}{2z+x}\le2\)

\(< =>\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\ge1\)

Áp dụng Bất đẳng thức AM-GM dạng cộng mẫu thức ta có : 

\(\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)hay \(a=b=c\)

Vậy bài toán đã được chứng minh xong 

14 tháng 7 2020

x=y=z hay a=b=c

1 tháng 5 2020

cho.mình..nha

1 tháng 5 2020

đặt\(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)

Khi đó điều kiện đb tương ứng

(x+y+z)3=24+x3+y3+z3(x+y+z)3=24+x3+y3+z3

⇔3(x+y)(x+z)(x+z)=24⇔3(x+y)(x+z)(x+z)=24

⇒3(2a+4b)(2b+4c)(2c+4a)=24⇒3(2a+4b)(2b+4c)(2c+4a)=24

⇒(a+2b)(b+2c)(c+2a)=1⇒(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

Chúc bạn học tốt!

21 tháng 10 2019

Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

2 tháng 8 2020

Đặt: 

x = a + c - b ; y = a + b - c ; z = b + c - a > 0 vì a; b ; c là độ dài 3 cạnh của 1 tam giác 

=> x + y + z = a + b + c 

=> a = \(\frac{x+y}{2}\); b = \(\frac{y+z}{2}\); c = \(\frac{x+z}{2}\)

=> 3a - b + c = 2 a + ( a - b + c ) =  ( x  + y ) + x = 2x + y 

Tương tự: 3b - c + a = 2y + z ; 3c - a + b =  x + 2z

Đưa về bài toán: Chứng minh: 

\(\frac{x+y}{2\left(2x+y\right)}+\frac{y+z}{2\left(2y+z\right)}+\frac{z+x}{2\left(2z+x\right)}\ge1\)

<=> \(\frac{2x+2y}{2x+y}+\frac{2y+2z}{2y+z}+\frac{2z+2x}{2z+x}\ge4\)(1)

Ta có: VT = \(1+\frac{y}{2x+y}+1+\frac{z}{2y+z}+1+\frac{x}{2z+x}\)

\(=3+\left(\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\right)\)

\(=3+\left(\frac{y^2}{2xy+y^2}+\frac{z^2}{2yz+z^2}+\frac{x^2}{2zx+x^2}\right)\)

\(\ge3+\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=3+1=4\)

=> (1) đúng 

=> Bất đẳng thức ban đầu đúng

Dấu "=" xảy ra <=> x = y = z <=>  a = b = c

21 tháng 10 2019

Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath