Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)
Tương tự:
\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)
Cộng vế với vế:
\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)
\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
Như thế, để tìm GTNN,GTLN của , tương đương với việc ta tìm GTLN,GTNN của hay cần tìm GTLN,GTNN của
Không mất tính tổng quát giả sử: thì: ;
Khi đó:
Ta có: nên:
Lập luận đi ngược lại thì tìm được các cực trị
dùng cô si thôi
\(a^4+b^2\ge2a^2b;b^4+c^2\ge2b^2c;c^4+a^2\ge2c^2a\)
\(a^2b^2+a^2\ge2a^2b;b^2c^2+b^2\ge2b^2c;c^2a^2+c^2\ge2c^2a\)
từ 2 cái trên =>\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow P\ge a^2+b^2+c^2+\frac{3\left(ab+bc+ca\right)}{\left(a^2+b^2+c^2\right)^2}\)
đặt t=a2+b2+c2\(\ge\frac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow\left[2\left(t-\frac{1}{2}\right)^2-\frac{19}{2}\right]\left(t-3\right)\ge0\)
\(\Leftrightarrow2t^3-8t^2-3t+27\ge0\)
\(\Leftrightarrow\frac{2t^3-3t+27}{2t^2}\ge4\Rightarrow P\ge4\)
Đặt \(a^2+b^2+c^2=t\)
Ta đi chứng minh: \(t=a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)(*)
Thật vậy: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=\left(a^3+b^3+c^3\right)+\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)\)(**)
Áp dụng BĐT AM - GM, ta có: \(a^3+ab^2\ge2\sqrt{a^4b^2}=2a^2b\)(do a,b dương) (1)
Tương tự ta có: \(b^3+bc^2\ge2b^2c\left(2\right);c^3+2ca^2\ge2c^2a\left(3\right)\)
Cộng theo vế của các BĐT (1), (2), (3), ta được: \(\left(a^3+b^3+c^3\right)+\left(ab^2+bc^2+ca^2\right)\ge2\left(a^2b+2b^2c+2c^2a\right)\)(***)
Từ (**) và (***) suy ra \(3\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\). Do đó (*) đúng.
Ta có: \(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}\)
\(\ge a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)}=t+\frac{9-t}{2t}\)với \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\)
Bài toán trở thành tìm GTNN của \(f\left(t\right)=t+\frac{9-t}{2t}\)với \(t\ge3\)
Ta chứng minh \(f\left(t\right)\ge f\left(3\right)\Leftrightarrow t+\frac{9-t}{2t}\ge4\Leftrightarrow\frac{\left(t-3\right)\left(2t-3\right)}{2t}\ge0\)(đúng với mọi \(t\ge3\))
Vậy \(MinP=4\)khi t = 3 hay a = b = c = 1
Ta có : \(ab+bc+ca=2abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=2\\P=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^3}+\frac{z^3}{\left(2-z\right)^2}\end{cases}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{64}}=\frac{3x}{4}\)
Tương tự ta có :
\(\hept{\begin{cases}\frac{y^3}{\left(2-y\right)^2}+\frac{2-y}{8}+\frac{2-y}{8}\ge\frac{3y}{4}\\\frac{z^3}{\left(2-z\right)^2}+\frac{2-z}{8}+\frac{2-z}{8}\ge\frac{3z}{8}\end{cases}}\)
\(\Rightarrow P+\frac{12-2\left(x+y+z\right)}{8}\ge\frac{3}{4}\left(x+y+z\right)\)
\(\Rightarrow P\ge\frac{1}{12}\)
Dấu " = " xảy ra khi \(x=y=z=\frac{2}{3}\)