Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^2-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)^3-3ab\left(a+b\right)-3\left(a+b\right).c\left(a+b+c\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)^3-3ab\left(a+b+c\right)-3\left(a+b\right).c\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3ab-3ab-3bc\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Ta có:
\(a;b;c>0\)
\(\Rightarrow a+b+c>0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
\(A=2020\left(1-\dfrac{a}{b}\right)\left(1-\dfrac{b}{c}\right)\left(1-\dfrac{c}{a}\right)-2021\left(\dfrac{a}{b}-\dfrac{b}{c}+\dfrac{c}{a}\right)^3\)
\(\Rightarrow A=2020.\left(1-1\right)\left(1-1\right)\left(1-1\right)-2021\left(1-1+1\right)^3\)
\(\Rightarrow A=-2021\).
Đề sai. Bạn cho $a=-1; b=2021; c=2$ thì để có đpcm thì pt:
$-x^2+2021x+2=P(2021)P(2022)=-4020$ có nghiệm nguyên.
Mà dễ thấy pt này không có nghiệm nguyên nên đề sai.
gọi các điểm như trên hình
I là giao 2 đường tiếp tuyến HI và AC=>OI là phân giác góc EOK (1) và IE=IK
C là giao 2 tiếp tuyến AC và BC => OC là phân giác góc KOD (2) và KC=DC
(1) và (2) => tam giác IOC vuông tại O, có đường cao OK =>OK2=IK.KC <=> OK2=IE.DC
CM tương tự ta được OJ2 = EH.BD
mà \(\text{OK=OJ=r}\)
=>\(\text{IE.DC=EH.BD}\)
=>\(\frac{EH}{EI}=\frac{CD}{BD}\)
Ta có : \(\text{HI // BC}\)
=>\(\frac{EI}{MC}=\frac{AI}{AC}=\frac{AH}{AB}=\frac{EH}{BM}\)
=> \(\frac{BM}{MC}=\frac{EH}{EI}\)
=>\(\frac{BM}{CM}=\frac{EH}{EI}=\frac{CD}{BD}\)
=> \(1+\frac{BM}{CM}=1+\frac{CD}{BD}\)\(\Leftrightarrow\frac{BC}{CM}=\frac{BC}{BD}\Rightarrow CM=BD\)
\(a^{2019}+b^{2019}=a^{2020}+b^{2020}\\ \Leftrightarrow a^{2020}-a^{2019}=b^{2019}-b^{2020}=0\\ \Leftrightarrow a^{2019}\left(a-1\right)=b^{2019}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{1-b}{a-1}\left(1\right)\\ a^{2020}+b^{2020}=a^{2021}+b^{2021}\\ \Leftrightarrow a^{2021}-a^{2020}=b^{2020}-b^{2021}\\ \Leftrightarrow a^{2020}\left(a-1\right)=b^{2020}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2020}}{b^{2020}}=\dfrac{1-b}{a-1}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{a^{2020}}{b^{2020}}\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow a=b\\ \Leftrightarrow2a^{2019}=2a^{2020}\\ \Leftrightarrow a=1=b\\ \Leftrightarrow P=2022-\left(1+1-1\right)^{2022}=2021\)
\(P=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\ge\dfrac{9}{2}-3=\dfrac{3}{2}\)
\(minP=\dfrac{3}{2}\Leftrightarrow a=b=c=\dfrac{2021}{3}\)
Giả sử rằng \(\left(x,y\right)\) là nghiệm nguyên của phương trình \(ax+by=c.\) Suy ra \(a\left(x+y\right)+y\left(b-a\right)=c.\) Vì \(b-a\vdots c\to a\left(x+y\right)\vdots c\). Mà \(a,c\) là hai số nguyên tố cùng nhau nên \(x+y\vdots c.\)
ơ đang chờ mấy bạn top bxh vô trả lời mà hỏng thấy đou
hộ mình với:(