K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

qua học 24 mà coi

29 tháng 7 2017

\(3a^2+4ab+b^2=3a^2+3ab+ab+b^2=3a\left(a+b\right)+b\left(a+b\right)=\left(3a+b\right)\left(a+b\right)\)

xong AM -GM

29 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{1}{\sqrt{3a^2+4ab+b^2}}=\dfrac{1}{\sqrt{\left(a+b\right)\left(3a+b\right)}}=\dfrac{\sqrt{2}}{\sqrt{\left(2a+2b\right)\left(3a+b\right)}}\)

\(\ge\dfrac{\sqrt{2}}{\dfrac{2a+2b+3a+b}{2}}=\dfrac{\sqrt{2}}{\dfrac{5a+3b}{2}}=\dfrac{2\sqrt{2}}{5a+3b}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{1}{\sqrt{3b^2+4bc+c^2}}\ge\dfrac{2\sqrt{2}}{5b+3c};\dfrac{1}{\sqrt{3c^2+4ca+a^2}}\ge\dfrac{2\sqrt{2}}{5c+3a}\)

Cộng theo vế 3 BĐT trên ta có:

\(P\ge\dfrac{2\sqrt{2}}{5a+3b}+\dfrac{2\sqrt{2}}{5b+3c}+\dfrac{2\sqrt{2}}{5c+3a}\)

\(\ge\dfrac{18\sqrt{2}}{8\left(a+b+c\right)}=\dfrac{18\sqrt{2}}{8}=\dfrac{9\sqrt{2}}{4}\)

Xảy ra khi \(a=b=c=\dfrac{1}{3}\)

7 tháng 5 2022

???????????????loằng ngoằng quá. Tui không hỉu cái GTNN

8 tháng 5 2022

GTNN là tắt của giá trị nhỏ nhất, 

Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\)   (số a là số biết trước) 

VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\)  hay \(minP=\dfrac{1}{3}\)

Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,

 VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra

                                  <=> x = b (x là ẩn và b là biết trước)

Ở một số bài có thể cho điều kiện của ẩn.

10 tháng 9 2017

Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập  springtime ấy

10 tháng 9 2017

Chào bác Thắng

AH
Akai Haruma
Giáo viên
9 tháng 7 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Hùng Nguyễn - Toán lớp 9 | Học trực tuyến