Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đẳng thức cần chứng minh tương đương với:
\(\dfrac{2a+b+c}{\left(a+b\right)\left(a+c\right)}=\dfrac{3}{a+b+c}\)
\(\Leftrightarrow\left(2a+b+c\right)\left(a+b+c\right)=3\left(a^2+ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+b^2+c^2+3ab+3ac+2bc=3a^2+3ab+3bc+3ca\)
\(\Leftrightarrow a^2=b^2+c^2-bc\).
Đây chính là định lý hàm cos cho tam giác ABC có \(\widehat{A}=60^o\).
(Phần chứng minh bạn có thể xem ở Cho tam giác ABC có Â=60 độ. Chứng minh rằng BC^2=AB^2 AC^2-AB.BC - Hoc24)
a) Ta có: \(\sin\widehat{ACB}=\dfrac{AB}{BC}\)
nên \(AB=\dfrac{3}{5}\cdot20=12\left(cm\right)\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=20^2-12^2=256\)
hay AC=16(cm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBD vuông tại B có BA là đường cao ứng với cạnh huyền CD, ta được:
\(AC\cdot AD=AB^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(BH\cdot BC=AB^2\)(2)
Từ (1) và (2) suy ra \(AC\cdot AD=BH\cdot BC\)