Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2 -b^2 -c^2 +2bc = a^2 -(b^2 +c^2 -2bc)
= a^2 -(b-c)^2
= (a-b+c)(a+b-c)
Theo bất đẳng thức tam giác, ta có:
a+c>b và a+b>c
Suy ra: a-b+c >0 và a+b-c >0
Do đó: (a-b+c)(a+b-c) >0
Vậy a^2 - b^2 -c^2 + 2bc >0
Chúc bạn học tốt.
Có : Đề=\(a^2-\left(b^2-2bc+c^2\right)\)\(=a^2-\left(b-c\right)^2\)\(=\left(a-b+c\right)\left(a+b-c\right)\)
mà theo đề ta có: \(a+c>b\)và \(a+b>c\)(theo bất đẳng thức trong tam giác-a,b,c là 3 cạnh của một tam giác)
==> \(a-b+c>0\)và \(a+b-c>0\)
Nhân vế theo vế hai biểu thức trên với nhau ta có:
\(\left(a-b+c\right)\left(a+b-c\right)>0\)==> Đpcm
Nhớ k mik nha
Theo BĐT trong tam giác, ta có:
a>b-c
<=>a2>(b-c)2
<=>a2>b2-2bc+c2
<=>a2+2bc>b2+c2
=>đpcm
Theo bất đẳng thức tam giác \(a>b-c\rightarrow a^2>\left(b-c\right)^2.\)
=> \(a^2>b^2-2bc+c^2\rightarrow a^2+2bc>b^2+c^2.\)
áp dụng bđt tam giác ta có :
a > b - c <=> a^2 > b^2 - 2bc + c^2 <=> a^2 + 2bc > b^2 + c^2
\(CMR:a^2-b^2-c^2+2bc>0\)
<=>\(\left(a-b-c\right)^2+2ab-2bc+2ac+2bc>0\)
<=>\(\left(a-b-c\right)^2+2ac+2ab>0\) ,(a,b,c >0) dfcm