K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2016

Giả sử 2 số trong 5 số không bằng nhau. VD a<b (1)

Trong 2 lũy thừa bằng nhau thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại

Vì vậy do ab=bc. Mà a<b⟹c<b

Ta có bc=cd mà c<b⟹c<d 

Ta có cd=de mà c<d⟹e<d 

Ta có de=ea mà e<d⟹a>e 

Ta có ea=ab mà a>e⟹a>b (2)

Từ (1) và (2) ~~> điều giả sử sai

Vậy a=b=c=d=e (đpcm)

24 tháng 12 2018

Câu hỏi sai rùi nhé em

29 tháng 5 2015

Gia su 2 so trong 5 so khong bang nhau .VD A<B (1)

Trong 2 lũy thừa bằng nhau  thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại .

Vi vay do a^b = b^c .Ma a<b => c < b

Ta co b^c=c^d ma c<b => c < d

Ta co c^d=d^e ma c < d => e < d

Ta co d^e =e^a ma e < d => a > e

Ta co e^a = a^b ma a > e => a > b  (2)

Tu (1)va (2)

​Vậy a=b=c=d (dpcm)

29 tháng 5 2015

Giả sử 2 số trong 5 số không bằng nhau. VD a<b (1)

Trong 2 lũy thừa bằng nhau thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại

Vì vậy do a^b=b^c. Mà a<b=>c<b

Ta có b^c=c^d mà c<b=>c<d 

Ta có c^d=d^e mà c<d=>e<d 

Ta có d^e=e^a mà e<d=>a>e 

Ta có e^a=a^b mà a>e=>a>b (2)

Từ (1) và (2) ~~> điều giả sử sai

Vậy a=b=c=d=e (đpcm)

24 tháng 4 2017

Đặt (a;c)=q thì a=\(qa_1\) ;    c=\(qc_1\) (Vs (a1;c1=1)

\(\Rightarrow\) ab=cd \(\Leftrightarrow\)ba1=dc1
Dẫn đến \(d⋮a_1\)

Đặt   \(d=a_1d_1\) thay vào đc:
\(b=d_1c_1\)
Vậy \(a^n+b^n+c^n+d^n=q^2a^n_1+d^n_1c^n_1+q^nc^n_1+a^n_1d^n_1=\left(c^n_1+a^n_1\right)\left(d^n_1+q^n\right)\)
là hợp số (QED)   

27 tháng 2 2021

5y356y5

19 tháng 10 2019

27 tháng 10 2016

Ta có :

\(\left[\left(a+b\right)+\left(c+d\right)+e\right]^2\)

\(=\left(a+b\right)^2+\left(c+d\right)^2+e^2+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)

\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2ab+2cd+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)

\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)

Do \(2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)chia hết cho 2 và \(\left(a^2+b^2+c^2+d^2+e^2\right)\)chia hết cho 2 nên \(\left(a+b+c+d+e\right)^2\)chia hết cho 2

\(\Rightarrow a+b+c+d+e\)chia hết cho 2

Đồng thời có \(a+b+c+d+e>2\)( Bắt buộc )

\(\Rightarrow\)a+b+c+d+e là hợp số

Bài này mình nhóm 3 số lại để trở thành hẳng đẳng thức đơn giản cho bạn dễ hiểu.

28 tháng 10 2016

em lớp 6 nhìn bài giảng của chị CTV hoa hết cả mắt chẳng hiểu chi nổi. 

em xin trình bày cách của em lập luận có gì thiếu sót chị chỉ bảo .

a^2+b^2+c^2+d^2+e^2 chia hết cho 2

* nếu a,b,c,d,e đều chẵn => hiển nhiên A=(a+b+c+d+e) là hợp số vì a,b,c,d,e>0

*nếu trong số (a,b,c,d,e) có số lẻ bình phương số lẻ là một số lẻ vậy do vậy số các con số lẻ phải chẵn

như vậy a+b+c+d+e cũng là một số chắn

mà a,b,c,d,e>0 do vậy a+b+c+d+e khác 2  vậy a+b+c+d+e=2k với k khác 1 => dpcm.

( ở đây em chỉ cần khác 2  loại số nguyên tố chẵn ) thực tế a+b+c+d+e >6)