K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2020

\(\frac{a+b+c+d}{ab}+\frac{a+b+c+d}{ac}+\frac{a+b+c+d}{ad}\)

\(=\frac{a+b}{ab}+\frac{c+d}{ab}+\frac{a+b}{ac}+\frac{a+b}{ad}+\frac{c+d}{ac}+\frac{c+d}{ad}\)

\(=\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)+\left(d+c\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\)

Áp dụng bất đẳng thức:

\(\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\ge18\)

\(\left(c+d\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\ge18\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)+\left(c+d\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\ge36\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\ge36\left(đpcm\right)\)

NV
16 tháng 3 2019

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

20 tháng 11 2017

Đặt A= abc(bc+a2)(ac+b2)(ab+c2)

Giả sử 1/a + /b + 1/c - (a+b)/(bc+a2) - (b+c)/(ac+b2) - (c+a)/(ab+c2) >=0

<=> (a4b4+b4c4+c4a4-a4b2c2-b4a2c2-c4a2b2)/A >= 0

<=> (2a4b4+2b4c4+2c4a4-2a4b2c2-2b4a2c2-2c4a2b2)/2A >= 0

<=> (a2b2-b2c2)2+(b2c2-c2a2)2+(c2a2-a2b2)2/2A >= 0  (đúng với mọi a,b,c)

20 tháng 11 2017

mk chỉ lm theo cách hiểu của mk thôi!nếu ko đúng thì thông cảm nha!

giả sử: \(a\ge b\ge c>0\)(ko mất tính tổng quát)

\(\Rightarrow a^2\ge ac\)\(\Leftrightarrow a^2+bc\ge ac+bc\)  (vì b>0;c>0)

\(\Leftrightarrow a^2+bc\ge c\left(a+b\right)\)

\(\Leftrightarrow\frac{a+b}{a^2+bc}\le\frac{1}{c}\) (vì a;b;c>0)     (1)

c/m tương tự ta đc: \(\frac{b+c}{ac+b^2}\le\frac{1}{a};\)    (2)

                             \(\frac{c+a}{ab+c^2}\le\frac{1}{b}\)   (3)

từ (1),(2),(3)=>đpcm

1 tháng 3 2018

c+1 hay c-1 vậy  xem lại đề ik 

1 tháng 3 2018

Áp dụng tính chất : 1/x+y < = 1/4.(1/x + 1/y) với x,y > 0 thì :

ab/c+1 = ab/c+a+b+c = ab/(c+a)+(c+b) < = ab/4.(1/c+a + 1/c+b) = 1/4.(ab/c+a + ab/c+b)

Tương tự : bc/a+1 < = 1/4.(bc/a+c + bc/a+b) ; ca/b+a < = 1/4.(ca/b+c + ca/b+a)

=> ab/c+1 + bc/a+1 + ca/b+1 < = 1/4.(ab/c+a + ab/c+b + bc/a+c + bc/a+b + ca/b+c + ca/b+a ) 

= 1/4.[(ab/c+a + bc/a+c) + (ab/c+b + ca/b+c) + (bc/a+b + ca/a+b)]

= 1/4.(a+b+c) = 1/4

=> ĐPCM

Tk mk nha

31 tháng 12 2016

Ai biết cách làm giải hộ đi///

29 tháng 8 2016

\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) ( luôn đúng )

\(\Leftrightarrow\) ĐPCM

10 tháng 8 2017

hi kết bạn nha