K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

Đặt:

\(A=\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\)

Áp dụng bất đẳng thức bunhiacopxki ta có:

\(A^2=\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\le\left(1^2+1^2+1^2\right)\left(4a+1+4b+1+4c+1\right)=21\)

Hay \(A\le\sqrt{21}\left(đpcm\right)\)

29 tháng 12 2017

Rảnh quá ủng hộ cách khác nè =))

Áp dụng Cô-si có:

\(\sqrt{4a+1}\cdot\sqrt{\dfrac{7}{3}}\le\dfrac{4a+1+\dfrac{7}{3}}{2}=2a+\dfrac{5}{3}\)

Tương tự vs 2 bđt còn lại: \(\left\{{}\begin{matrix}\sqrt{4b+1}\cdot\sqrt{\dfrac{7}{3}}\le2b+\dfrac{5}{3}\\\sqrt{4c+1}\cdot\sqrt{\dfrac{7}{3}}\le2c+\dfrac{5}{3}\end{matrix}\right.\)

Cộng 2 vế của 3 bđt trên có:

\(\sqrt{\dfrac{7}{3}}\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)\le2\left(a+b+c\right)+5=7\)

\(\Leftrightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)

Hoàn tất chứng minh

NV
19 tháng 1 2021

Đề bài thiếu, chắc chắn phải có thêm 1 dữ kiện khác

Ví dụ, bạn cho \(a=b=c=1000\) sẽ thấy BĐT sai

19 tháng 1 2021

Thôi e ra rồi ạ. Đề bài thiếu cái chỗ là "a+b+c = 1"

26 tháng 11 2019

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)}\) \(=\sqrt{3.\left(4.3+3\right)}=\sqrt{3.15}=3\sqrt{5}\)

\(\text{Dấu ''='' xảy ra }\Leftrightarrow a=b=c=1\)

NV
28 tháng 11 2019

\(A\le\frac{1}{27}\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^3\)

Mặt khác:

\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{3\left[4\left(a+b+c\right)+3\right]}=3\sqrt{5}\)

\(\Rightarrow A\le\frac{1}{27}\left(3\sqrt{5}\right)^3=5\sqrt{5}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
10 tháng 11 2019

\(P=\sum\frac{a}{\sqrt{\left(2a\right)^2+\left(b+c\right)^2}}\le\sqrt{2}\sum\frac{a}{2a+b+c}=\sqrt{2}\sum a\left(\frac{1}{a+b+a+c}\right)\le\frac{\sqrt{2}}{4}\sum\left(\frac{a}{a+b}+\frac{a}{a+c}\right)=\frac{3\sqrt{2}}{4}\)

Dấu "=" xảy ra khi \(a=b=c\)

15 tháng 11 2020

1)

\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)

Dấu "=" xảy ra khi a=2

15 tháng 11 2020

2)

\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)

6 tháng 3 2021

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+ac+bc}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\) Chứng minh tương tự ta được:

\(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{b+a}+\dfrac{b}{b+c}\right);\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+a}+\dfrac{b}{b+c}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)=\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\left(1+1+1\right)=\dfrac{3}{2}\) Dấu = xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)

NV
6 tháng 3 2021

\(\dfrac{a}{\sqrt{a^2+1}}=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

Tương tự: \(\dfrac{b}{\sqrt{b^2+1}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)

Cộng vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

17 tháng 12 2018

Áp dụng BĐT Cauchy-Schwarz:

\(VT^2\le\left(a+b+c\right)\left(\dfrac{a}{4a+3bc}+\dfrac{b}{4b+3ac}+\dfrac{c}{4c+3ab}\right)\)

Ta đi chứng minh \(\sum\dfrac{a}{4a+3bc}\le\dfrac{1}{2}\). Qui đồng và chuyển vế ta thu được:

\(abc\left[18\left(a^2+b^2+c^2\right)+27abc-32\right]\ge0\) (*)

Xét \(18\sum a^2+27abc-32=9\left(\sum a^2\right)\left(a+b+c\right)+27abc-4\left(a+b+c\right)^3\)

\(=5\sum a^3+3abc-3\sum ab\left(a+b\right)\)

\(=\sum2\left(a+b\right)\left(a-b\right)^2+\left[a^3+b^3+c^3+3abc-\sum ab\left(a+b\right)\right]\ge0\)

Do \(\sum a^3+3abc\ge\sum ab\left(a+b\right)\) ( BĐT Schur Bậc 3)

Do đó (*) luôn đúng.Dấu = xảy ra tại 2 điểm là a=b=c=2/3 hoặc a=0,b=c=1 cùng các hoán vị tương ứng.

17 tháng 11 2021

\(S=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)

\(\sqrt{a^2+\dfrac{1}{b^2}}=\dfrac{1}{\sqrt{17}}\sqrt{\left(a^2+\dfrac{1}{b^2}\right)\left(1+4^2\right)}\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}\right)\left(1\right)\)\(\left(bunhia\right)\)

\(tương-tự\Rightarrow\sqrt{b^2+\dfrac{1}{c^2}}\ge\dfrac{1}{\sqrt{17}}\left(b+\dfrac{4}{c}\right)\left(2\right)\)

\(\sqrt{c^2+\dfrac{1}{a^2}}\ge\dfrac{1}{\sqrt{17}}\left(c+\dfrac{4}{a}\right)\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left(a+\dfrac{4}{b}+b+\dfrac{4}{c}+c+\dfrac{4}{a}\right)\)

\(\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left[16a+\dfrac{4}{a}+16b+\dfrac{4}{b}+16c+\dfrac{4}{c}-15\left(a+b+c\right)\right]\)

\(\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left[2\sqrt{16a.\dfrac{4}{a}}+2\sqrt{16b.\dfrac{4}{b}}+2\sqrt{16c.\dfrac{4}{c}}-15.\dfrac{3}{2}\right]\left(am-gm\right)\)

\(\Rightarrow S\ge\dfrac{1}{\sqrt{17}}\left(16+16+16-\dfrac{45}{2}\right)=\dfrac{3\sqrt{17}}{2}\)

\(\Rightarrow MinS=\dfrac{3\sqrt{17}}{2}\Leftrightarrow a=b=c=\dfrac{1}{2}\)