K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Ta có: \(3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2=\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\)

\(\Rightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\) nên với \(x,y,z>0\) ta có:

\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\) áp dụng ta có:

\(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+b+2}}+\frac{1}{\sqrt{ca+c+2}}\le\sqrt{3\left(\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\right)}\)

Với: \(x,y>0\) ta có: \(x+y\ge2\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Áp dụng ta được:

 \(\frac{1}{ab+a+2}=\frac{1}{ab+1+a+1}=\frac{1}{ab+abc+a+1}=\frac{1}{ab\left(c+1\right)+\left(a+1\right)}\)

\(\le\frac{1}{4}\left(\frac{1}{ab\left(c+1\right)}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{abc}{ab\left(c+1\right)}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)

Vậy ta có: \(\frac{1}{ab+a+2}\le\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\)

Tương tự như trên ta có: \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right)\) và \(\frac{1}{ca+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\) nên:

\(\Rightarrow\sqrt{3\left(\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\right)}\)

\(\le\sqrt{3.\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}+\frac{a}{a+1}+\frac{1}{b+1}+\frac{b}{b+1}+\frac{1}{c+1}\right)}=\frac{3}{2}\)

Vậy \(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+b+2}}+\frac{1}{\sqrt{ca+c+2}}\le\frac{3}{2}\left(đpcm\right)\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

5 tháng 2 2020

Đặt \(\left(a;b;c\right)=\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\). BĐT quy về:\(\Sigma_{cyc}\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}\le\frac{3}{2}\)

Áp dụng liên hoàn BĐT Cô si:

\(VT=\Sigma_{cyc}\sqrt{\frac{yz}{\left(xy+yz\right)+\left(xz+yz\right)}}\le\Sigma_{cyc}\sqrt{\frac{yz}{4}\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)}\)

\(=\frac{1}{2}\Sigma_{cyc}\sqrt{1\left(\frac{yz}{xy+yz}+\frac{yz}{xz+yz}\right)}\le\frac{1}{4}\Sigma_{cyc}\left(1+\frac{yz}{xy+yz}+\frac{yz}{xz+yz}\right)=\frac{3}{2}\)

15 tháng 11 2019

Tham khảo

Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath

15 tháng 11 2019

à xl gửi lộn

AH
Akai Haruma
Giáo viên
18 tháng 1 2017

Lời giải:

Từ $abc=1$ suy ra tồn tại $x,y,z>0$ sao cho \((a,b,c)=\left(\frac{x}{y},\frac{y}{z},\frac{z}{x}\right)\)

Bài toán chuyển về CMR:

\(A=\sqrt{\frac{yz}{xy+xz+2yz}}+\sqrt{\frac{xz}{xy+yz+2xz}}+\sqrt{\frac{xy}{2xy+yz+xz}}\leq \frac{3}{4}\)

Áp dụng BĐT AM-GM: \(\sqrt{\frac{yz}{xy+xz+2yz}}\leq \frac{yz}{xy+xz+2yz}+\frac{1}{4}\)

Thiết lập tương tự... \(\Rightarrow A\leq \frac{xy}{2xy+yz+xz}+\frac{yz}{xy+2yz+xz}+\frac{xz}{xy+yz+2xz}+\frac{3}{4}\) $(1)$

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{\frac{xy+yz+xz}{3}}+\frac{1}{xy}\geq \frac{16}{2xy+yz+xz}\Rightarrow \frac{9xy}{xy+yz+xz}+1\geq \frac{16xy}{2xy+yz+xz}\)

Thiết lập tương tự với các phân thức còn lại và công theo vế:

\(\Rightarrow \frac{xy}{2xy+yz+xz}+\frac{yz}{xy+2yz+xz}+\frac{xz}{xy+yz+2xz}\leq \frac{12}{16}=\frac{3}{4}\) $(2)$

Từ \((1),(2)\Rightarrow A\leq \frac{3}{2} (\text{đpcm})\).

Dấu $=$ xảy ra khi $x=y=z$ hay $a=b=c=1$

17 tháng 1 2020

bạn có đang on không chat vs mình đi

24 tháng 3 2020

Trước khi đọc lời giải hãy thăm nhà em trước nhé ! See method from solution! Cảm ơn mn!

Ok, giờ chú ý:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{ab.ca+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=1\) với abc = 1.

Như vậy: \(VT=\sqrt{\left(\Sigma\frac{1}{\sqrt{ab+a+2}}\right)^2}\le\sqrt{3\left(\Sigma\frac{1}{\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+\frac{\left(ab+a+1\right)}{3}+1}\right)}\)

\(\le\sqrt{\frac{3}{16}\left[\Sigma\left(\frac{9}{ab+a+1}+1\right)\right]}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

17 tháng 6 2019

Ta có:\(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a\left(a+b\right)+c\left(a+b\right)}}\)

\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) (Áp dụng BĐT AM-GM)

Tương tự với hai BĐT còn lại và cộng theo vế ta thu được đpcm.

27 tháng 5 2021

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).

Với \(a,b>0\), ta có:

\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).

\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).

\(\Leftrightarrow a^4-a^3-a+1\ge0\).

\(\Leftrightarrow a^4-a^3+1\ge a\).

\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).

\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).

Chứng minh tương tự (với \(b,c>0\)), ta được:

\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=1\).

Chứng minh tương tự (với \(a,c>0\)), ta được:

\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)

Dấu bằng xảy ra \(\Leftrightarrow c=1\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:

\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).

\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).

Ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).

Do đó:

\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).

\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).

\(+2\)nhé, không phải \(-2\)đâu.

4 tháng 6 2020

Vì abc = 1 nên ta có thể đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\). Khi đó: 

\(VT=\Sigma_{cyc}\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}=\Sigma_{cyc}\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}\)

\(\Rightarrow VT^2\le\left(1+1+1\right)\left(\Sigma_{cyc}\frac{yz}{xy+xz+2yz}\right)\left(\text{ }\right)\)(Theo BĐT Cauchy-Schwarz)

\(\le\frac{3}{4}\left[\Sigma_{cyc}yz\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)\right]=\frac{3}{4}\left(\Sigma_{cyc}\frac{xy+yz}{xy+yz}\right)=\frac{9}{4}\)

\(\Rightarrow VT\le\frac{3}{2}\)

Đẳng thức xảy ra khi x = y = z hay a = b = c = 1

19 tháng 5 2020

Đề: \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\) ???

*Ta chứng minh : \(x^4-x^3+2\ge x+1\forall x>0\)

\(\Leftrightarrow x^4-x^3-x+1\ge0\Leftrightarrow\left(x-1\right)^2\left(x^2+x+1\right)\ge0\) ( đúng )

Do đó: \(VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\) \(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)

Dấu "=" \(\Leftrightarrow a=b=c=1\)

NV
20 tháng 6 2020

Đặt vế trái là P và \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=4\)

Ta cần chứng minh: \(P=\frac{1}{xy+2yz+zx}+\frac{1}{xy+yz+2zx}+\frac{1}{2xy+yz+zx}\le\frac{1}{xyz}\)

\(P=\frac{1}{xy+yz+yz+zx}+\frac{1}{xy+yz+zx+zx}+\frac{1}{xy+xy+yz+zx}\)

\(P\le\frac{1}{16}\left(\frac{1}{xy}+\frac{2}{yz}+\frac{1}{zx}+\frac{1}{xy}+\frac{1}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(P\le\frac{1}{4}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{4}\left(\frac{x+y+z}{xyz}\right)=\frac{1}{4}.\frac{4}{xyz}=\frac{1}{xyz}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\frac{4}{3}\) hay \(a=b=c=\frac{16}{9}\)