Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(2-c\right)\left(b-c\right)}{2a+bc}=\frac{\left(a+b\right)\left(b-c\right)}{a\left(a+b+c\right)+bc}=\frac{\left(a+b\right)\left(b-c\right)}{\left(a+b\right)\left(c+a\right)}=\frac{b-c}{c+a}=\frac{b}{c+a}-\frac{c}{c+a}\)
Tương tự, ta có: \(\frac{\left(2-a\right)\left(c-a\right)}{2b+ca}=\frac{c}{a+b}-\frac{a}{a+b};\frac{\left(2-b\right)\left(a-b\right)}{2c+ab}=\frac{a}{b+c}-\frac{b}{b+c}\)
\(\Rightarrow\)\(VT=\left(\frac{a}{b+c}-\frac{a}{a+b}\right)+\left(\frac{b}{c+a}-\frac{b}{b+c}\right)+\left(\frac{c}{a+b}-\frac{c}{c+a}\right)\)
\(=\frac{a\left(a-c\right)}{\left(a+b\right)\left(b+c\right)}+\frac{b\left(b-a\right)}{\left(b+c\right)\left(c+a\right)}+\frac{c\left(c-b\right)}{\left(c+a\right)\left(a+b\right)}\)
\(=\frac{a\left(a-c\right)\left(c+a\right)+b\left(b-a\right)\left(a+b\right)+c\left(c-b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{\left(a^3+b^3+c^3\right)-\left(a^3+b^3+c^3\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{3}\)
cái bđt \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\) cô Chi có làm r ib mk gửi link
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Do a, b, c >0
=> a+b+c>0 và \(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) >0
Áp dụng bất đẳng thức Cô si ta có:
\(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) \(\ge\) 3 \(\sqrt[3]{\dfrac{a^2b^2c^2}{abc}}\) = 3\(\sqrt[3]{abc}\)
a+b+c \(\ge\) 3 \(\sqrt[3]{abc}\)
=> \(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) - (a+b+c) \(\ge\) 3\(\sqrt[3]{abc}\) - 3\(\sqrt[3]{abc}\)
=>\(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\)- (a+b+c) \(\ge\) 0
=> \(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) \(\ge\) a+b+c (dpcm)
a2+b2+c2=ab+ac+bc
<=>2a2+2b2+2c2=2ab+2ac+2bc
<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0
<=>(a-b)2+(a-c)2+(b-c)2=0
<=>a-b=0 và a-c=0 và b-c=0
<=>a=b=c
tham khảo bài này xem có ra không
(ac+bd)2+(ad-bc)2=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2
=a2c2+b2d2+a2d2+b2c2
=(a2c2+b2c2)+(b2d2+a2d2)
=c2.(a2+b2)+d2.(a2+b2)
=(a2+b2)(c2+d2)= VT ( điều phải chứng minh)
•๖ۣۜAƙαĭ ๖ۣۜHαɾυмα•™ [ RBL ] ❧PEWDS☙ chỉ biết đi copy thôi à ?
a) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
b) \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\cdot\left(-c\right)\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)( đpcm )
ta xét vế trái a^3+b^3+c^3=
[(a+b)(a^2-ab+b^2)]+c^3.(1)
Mà theo giả thuyết a+b+c=0 suy ra c= - (a+b)suy ra
c^3= -(a+b)^3
Thay vào`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3
(nhân tử chúng ta có)=(a+b)[a^2-ab+b^2-(a+b)^2]
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)]
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2)
=(a+b).(-3ab)
= -(a+b).3ab (2)
theo giả thuyết ta có: a+b+c=0 suy ra c= -(a+b)
thay vào (2) ta dc
=3abc
ta kết luận :vế trái= vế phải
chúc bn hc tốt
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)\ge a.2bc+b.2ca+c.2ab=2abc+2abc+2abc=6abc\)