K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

11 tháng 6 2021

Cho \(a+b+c=1\) nhé các bạn.

11 tháng 6 2021

Đặt ab + bc + ca = q; abc = r. Ta có:

\(A=\dfrac{\left(ab+bc+ca\right)+6\left(a+b+c\right)+27}{abc+3\left(ab+bc+ca\right)+9\left(a+b+c\right)+27}-\dfrac{1}{3\left(ab+bc+ca\right)}\)

\(A=\dfrac{q+33}{r+3q+36}-\dfrac{1}{3q}\).

Theo bất đẳng thức Schur: \(a^3+b^3+c^3+3abc\ge a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

\(\Leftrightarrow\left(a+b+c\right)^3+9abc\ge4\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow9r\ge4q-1\Leftrightarrow r\ge\dfrac{4q-1}{9}\).

Từ đó \(A\le\dfrac{q+33}{\dfrac{4q-1}{9}+3q+36}-\dfrac{1}{3q}\)

\(\Rightarrow A\leq \frac{27q^2+860q-323}{93q^2+969q}\)

\(\Rightarrow A+\dfrac{1}{10}=\dfrac{\left(3q-1\right)\left(121q+3230\right)}{30q\left(31q+323\right)}\le0\). (Do \(q=ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\))

\(\Rightarrow A\leq \frac{-1}{10}\). Dấu "=" xảy ra khi và chỉ khi a = b = c = 1.

 

 

5 tháng 10 2021

a) \(=x^3-\dfrac{1}{27}-x^2+\dfrac{2}{3}x-\dfrac{1}{9}=x^3-x^2+\dfrac{2}{3}x-\dfrac{2}{27}\)

b) \(=x^6-6x^4+12x^2-8-x^3+x+x^2-3x=x^6-6x^4-x^3+13x^2-2x-8\)

25 tháng 9 2021

Từ x=\(\dfrac{1}{2}\)a+\(\dfrac{1}{2}\)b+\(\dfrac{1}{2}\)c=\(\dfrac{1}{2}\).(a+b+c)\(\Rightarrow\)2x=(a+b+c)

M=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)+x\(^2\)

= x\(^2\)-xb-ax+ab+x\(^2\)-xc-bx+bc+x\(^2\)-ax-cx+ac+x\(^2\)

= 4x\(^2\)-2ac-2bx-2cx+ab+bc+ac

= 4x\(^2\)-2x(a+b+c)+ab+bc+ca

Thay 2x=a+b+c,ta được:

M= 4x\(^2\)-2x.2c+ab+bc+ca

M= 4x\(^2\)-4x\(^2\)+ab+bc+ca

M= ab+bc+ca

19 tháng 8 2018

a.b. \(A=\dfrac{2}{x-1}+\dfrac{2\left(x+1\right)}{x^2+x+1}+\dfrac{x^2-10x+3}{x^3-1}\) ( x ≠ 1 )

\(A=\dfrac{2\left(x^2+x+1\right)+2\left(x+1\right)\left(x-1\right)+x^2-10x+3}{x^3-1}\)

\(A=\dfrac{2x^2+2x+2+2x^2-2+x^2-10x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\dfrac{5x^2-8x+3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{5x^2-5x-3x+3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{5x\left(x-1\right)-3\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{\left(x-1\right)\left(5x-3\right)}{x^2+x+1}=\dfrac{5x-3}{x^2+x+1}\)

c.

\(A=\dfrac{5x-3}{x^2+x+1}\)

\(\Leftrightarrow A\left(x^2+x+1\right)=5x-3\)

\(\Leftrightarrow Ax^2+Ax+A-5x+3=0\)

\(\Leftrightarrow Ax^2+\left(A-5\right)x+A+3=0\)

( \(a=A,b=A-5,c=A+3\) )

* A = 0 \(\Rightarrow x=\dfrac{3}{5}\)

* \(A\ge0\)

\(\Rightarrow\Delta=b^2-4ac\ge0\)

\(\Rightarrow\left(A-5\right)^2-4.A\left(A-3\right)\ge0\)

\(\Rightarrow A^2-10A+25-4A^2-12A\ge0\)

\(\Rightarrow-3A^2-22A+25\ge0\)

\(\Rightarrow-\dfrac{25}{4}\le A\le1\)

\(\Rightarrow Min_A=-\dfrac{25}{3}\Leftrightarrow x=\dfrac{-b}{2a}=\dfrac{\dfrac{25}{3}+5}{2.\left(\dfrac{-25}{3}\right)}=-\dfrac{4}{5}\)

19 tháng 8 2018

giúp với

a) Ta có: \(\dfrac{3a^2-10a+3}{2\left(a-3\right)}\)

\(=\dfrac{3a^2-9a-a+3}{2\left(a-3\right)}\)

\(=\dfrac{3a\left(a-3\right)-\left(a-3\right)}{2\left(a-3\right)}\)

\(=\dfrac{\left(a-3\right)\left(3a-1\right)}{2\left(a-3\right)}\)

\(=\dfrac{3a-1}{2}\)

\(=\dfrac{3}{2}a-\dfrac{1}{2}\)(đpcm)

b) Ta có: \(\dfrac{b^2+3b+9}{b^3-27}\)\(=\dfrac{b^2+3b+9}{\left(b-3\right)\left(b^2+3b+9\right)}\)

\(=\dfrac{1}{b-3}\)

\(=\dfrac{b-2}{\left(b-3\right)\left(b-2\right)}\)

\(=\dfrac{b-2}{b^2-5b+6}\)(đpcm)

2 tháng 1 2021

Rắc rối vậy