K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

`a)x^4+2x^2y+y^2`

`=(x^2+y)^2`

`b)(2a+b)^2-(2b+a)^2`

`=(2a+b-2b-a)(2a+b+2b+a)`

`=(a-b)(3a+3b)`

`=3(a-b)(a+b)`

`c)8a^3-27b^3-2a(4a^2-9b^2)`

`=(2a-3b)(4a^2+6ab+9b^2)-2a(2a-3b)(2a+3b)`

`=(2a-3b)(4a^2+6ab+9b^2-3a^2-6ab)`

`=9b^2(2a-3b)`

a) Ta có: \(x^4+2x^2y+y^2\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot y+y^2\)

\(=\left(x^2+y\right)^2\)

b) Ta có: \(\left(2a+b\right)^2-\left(2b+a\right)^2\)

\(=\left(2a+b-2b-a\right)\left(2a+b+2b+a\right)\)

\(=\left(a-b\right)\left(3a+3b\right)\)

\(=3\left(a+b\right)\left(a-b\right)\)

7 tháng 7 2021

A=(7-2x)(7+2x)+(2x+7)2

    =49-4x2+4x2+28x+49

   = 98+28x

B=(4x-5)2-(2x-1)(8x-5)

  = 16x2-25-((8x(2x-1))-(5(2x-1)))

  = 16x2-25-((16x2+8x)-(10x+5))

  = 16x2-25-(16x2+8x-10x-5)

  = 16x2-25-16x2-8x+10x+5

   = -20+2x

a) Ta có: \(A=\left(7-2x\right)\left(7+2x\right)+\left(2x+7\right)^2\)

\(=7-4x^2+4x^2+28x+49\)

\(=28x+56\)

b) Ta có: \(B=\left(4x-5\right)^2-\left(2x-1\right)\left(8x-5\right)\)

\(=16x^2-40x+25-\left(16x^2-10x-8x+5\right)\)

\(=16x^2-40x+25-16x^2+18x-5\)

\(=-22x+20\)

c) Ta có: \(C=\left(5x-3\right)^2-2\left(5x-3\right)\left(5-5x\right)+\left(5x-5\right)^2\)

\(=\left(5x-3\right)^2+2\cdot\left(5x-3\right)\left(5x-5\right)+\left(5x-5\right)^2\)

\(=\left(5x-3+5x-5\right)^2\)

\(=\left(10x-8\right)^2\)

\(=100x^2-160x+64\)

d) Ta có: \(D=\left(2a+3b-c\right)\left(2a-3b+c\right)-\left(4a^2-9b^2-c^2\right)\)

\(=\left[\left(2a+\left(3b-c\right)\right)\left(2a-\left(3b-c\right)\right)\right]-\left(4a^2-9b^2-c^2\right)\)

\(=4a^2-\left(3b-c\right)^2-4a^2+9b^2+c^2\)

\(=-9b^2+6bc-c^2+9b^2+c^2\)

=6bc

7 tháng 7 2018

Thực hiện phép tính đối với vế trái của mỗi đẳng thức.

a) Ta có: \(\dfrac{P}{x+2}=\dfrac{x^2+5x+6}{x^2+4x+4}\)

\(\Leftrightarrow\dfrac{P}{x+2}=\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)^2}=\dfrac{x+3}{x+2}\)

hay P=x+3

NV
3 tháng 8 2021

\(M=-x^2+12x+8=-\left(x-6\right)^2+44\le44\)

\(M_{max}=44\) khi \(x=6\)

\(N=a^2+9b^2+5a-6b=\left(a+\dfrac{5}{2}\right)^2+\left(3b-1\right)^2-\dfrac{41}{4}\ge-\dfrac{41}{4}\)

\(N_{min}=-\dfrac{41}{4}\) khi \(\left(a;b\right)=\left(-\dfrac{5}{2};\dfrac{1}{3}\right)\)

\(Q=3\left(a-5\right)^2-82\ge-82\)

\(Q_{min}=-82\) khi \(a=5\)

NV
25 tháng 7 2021

1.

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

Ta có:

\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)

\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)

\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)

\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)

NV
25 tháng 7 2021

b.

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)

28 tháng 9 2017