Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức:a=b.q+r(r lớn hơn hoặc bằng 0,r<b)
Ta có:a=7.q+4
b=7.q+3
nên a+b=7q+4+7q+3=14q+7 chia hết cho 7(vì 14q chia hết 7,7 chia hết7)
Vậy a+b chia hết cho 7(ĐPCM)
Bấm đúng cho mk nếu taháy đúng.Thanks.
a) theo đề bài \(\overline{ab}=3ab\)
\(\Rightarrow10a+b=3ab\) (1)
\(\Rightarrow10a+b⋮a\)
\(\Rightarrow b⋮a\)
b) do \(b=ka\Rightarrow k< 10\)thay \(b=ka\)vào (1)
\(10a+ka=3a.ka\)
\(\Rightarrow10+k=3ak\) (2)
\(\Rightarrow10+k⋮k\)
\(\Rightarrow10⋮k\)
c) do \(k< 10\Rightarrow k\in\left\{1;2;5\right\}\)
với\(k=1\), thay vào(2) : 11 =3a ,loại
với \(k=2\),thay vào (2) : 12 = 6a=>a=2
\(b=ka=2.2=4\) ta có \(\overline{ab}=24=3.2.4\)
với \(k=5\)thay vào (2) : 15 =15a=>a=1;\(b=ka=5.1=5\)
ta có \(\overline{ab}=15=3.1.5\)
đáp số 24 và 15
\(A=\frac{5}{2^2}+\frac{10}{3^2}+\frac{17}{4^2}+...+\frac{226}{15^2}=\frac{2^2+1}{2^2}+\frac{3^2+1}{3^2}+\frac{4^2+1}{4^2}+.+\frac{15^2+1}{15^2}.\)
Vì A có 14 số hạng nên : \(A=1+\frac{1}{2^2}+1+\frac{1}{3^2}+1+\frac{1}{4^2}+...+1+\frac{1}{15^2}=14+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{15^2}.\)
\(\Rightarrow A< 14+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{14.15}=14+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...\frac{1}{14}-\frac{1}{15}.\)
\(\Rightarrow A=15-\frac{1}{15}< 15.\) Lạy có :
\(A>14+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{15.16}=14+\frac{1}{2}-\frac{1}{16}< 14,5.\)
Vậy A không phải là số tự nhiên \(14,5< A< 15.\)