Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy-10x+3y=28\)
\(\Leftrightarrow2x.\left(y-5\right)+3y=28\)
\(\Leftrightarrow2x.\left(y-5\right)+3y-15=28-15\)
\(\Leftrightarrow2x.\left(y-5\right)+3.\left(y-5\right)=13\)
\(\Leftrightarrow\left(2x+3\right).\left(y-5\right)=13\)
Mà \(x,y\in Z\Rightarrow2x+3;y-5\in Z\)
em lập bảng rồi tìm x,y nhưng mà phải nguyên nhé em
Bài 1:
\(-5.\left(2-x\right)+4.\left(x-3\right)=10x-15\)
\(-10+5x+4x-12=10x-15\)
\(\left(5x+4x\right)+\left(-10-12\right)+15=10x\)
\(9x+\left(-7\right)=10x\)
\(-7=10x-9x\)
\(x=-7\)
2xy + 3y - 4x = 11
=> 2x(y - 2) + 3y - 6 = 11 - 6
=> 2x(y-2) + 3(y - 2) = 5
=> (2x + 3)(y - 2) = 5
xét bảng là ra
4n - 5 chia hết cho 3n - 1
=> 3(4n - 5) chia hết cho 3n - 1
=> 12n - 15 chia hết cho 3n - 1
=> 12n - 4 - 11 chia hết cho 3n - 1
=> 4(3n - 1) - 11 chia hết cho 3n - 1
=> 11 chia hết cho 3n - 1
=> ...
a, \(A=\frac{10x+13}{2x+4}\inℤ\Leftrightarrow10x+13⋮2x+4\)
\(\Rightarrow10x+20-7⋮2x+4\)
\(\Rightarrow5\cdot2x+5\cdot4-7⋮2x+4\)
\(\Rightarrow5\left(2x+4\right)-7⋮2x-4\)
\(5\left(2x+4\right)⋮2x+4\)
\(\Rightarrow7⋮2x-4\)
tới đây bn liệt kê Ư(7) rồi làm tiếp.
b, \(A=\frac{10x+13}{2x+4}=\frac{10x+20-7}{2x+4}=\frac{5\left(2x+4\right)}{2x+4}-\frac{7}{2x+4}=5-\frac{7}{2x+4}\)
để A đạt giá trị nhỏ nhất thì \(\frac{7}{2x+4}\) lớn nhất
=> 2x+4 là số nguyên dương nhỏ nhất
+ xét 2x+4 = 1
=> 2x = -3
=> x = -1,5 loại vì x thuộc Z
+ xét 2x+4=2
=> 2x = -2
=> x = -1 (tm)
vậy x = 1 và \(A_{min}=5-\frac{7}{2}=\frac{3}{2}\)
a) |x2-25| + |y2-4| =0
=>\(\int^{\left|x^2-25\right|=0}\Leftrightarrow_{\left|y^2-4\right|=0}\int^{x^2=25}_{y^2=4}\Leftrightarrow\int^{x=5;x=-5}_{y=2;y=-2}\)
Vậy (x;y) thuộc {(5;2);(5;-2);(-5;2);(-5;-2)}
b) 2x(4 +y) +7(y+4) =0
(4+y)(2x+7) =0
+4+y =0 => y =-4
+ 2x +7 =0 => x = -7/2 ( loại)
Vậy y = -4 với mọi x thuộc Z
a) xy + x - 3y = 4
=> x(y + 1) - 3(y + 1) = 1
=> (x - 3)(y + 1) = 1
=> x - 3; y + 1 \(\in\) Ư(1) = {1; -1}
Lập bảng :
x - 3 | 1 | -1 |
y + 1 | 1 | -1 |
x | 4 | 2 |
y | 0 | -2 |
Vậy ...
b) Ta có: 2xy - x + y = 1
=> 2(2xy - x + y) = 2
=> 4xy - 2x + 2y = 2
=> 2x(2y - 1) + (2y - 1) = 1
=> (2x + 1)(2y - 1) = 1
=> 2x + 1; 2y - 1 \(\in\)Ư(1) = {1; -1}
Lập bảng :
2x + 1 | 1 | -1 |
2y - 1 | 1 | -1 |
x | 0 | -1 |
y | 1 | 0 |
vậy ...