Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A.3 =32 + 33 +34 + .... + 3100
A.3 - A =32 + 33 + 34 +.....+3100 - 3 - 31- 32 -....-399
A.2 = 3100 - 3
ta có 3100 = 34*25 suy ra 3100 tận cùng =1 suy ra 3100 -3 tận cùng bằng 8
Vậy A tận cùng bằng 4
a, 2A= 2+2^2+2^3+2^4+2^5+...+2^2017
=> 2A-A= 2^2017-1
=> A= 2^2017-1/2
a, \(A=1+2+2^2+...+2^n\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{n+1}\)
\(2A-A=\left(2+2^2+2^3+...+2^{n+1}\right)-\left(1+2+2^2+...+2^n\right)\)
\(\Rightarrow A=2^{n+1}-1\)
Mấy phần kiia cần có thêm dữ kiện
a) \(A=1+3+...+3^{50}\)
\(3A=3+3^2+...+3^{51}\)
\(3A-A=2A=3^{51}-1\Rightarrow A=\frac{3^{51}-1}{2}\)
B) \(A=\left(1+3+3^3\right)+\left(3^2+3^3+3^4\right)+....+\left(3^{48}+3^{49}+3^{50}\right)\)
\(=13+13\cdot3^2+...+13\cdot3^{48}\)
\(=13\left(1+3^2+...+3^{48}\right)⋮2\)
\(\Rightarrow A⋮3\)
C)\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5+3^6\right)+....+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)
\(=13+3^3\cdot40+3^7\cdot40+...+3^{47}\cdot40\)
\(=13+40\left(3^3+3^7+...+3^{47}\right)\)
Vậy A chia cho 40 dư 13
d) theo câu C
\(40\left(3^3+3^7+...+3^{47}\right)=10\cdot4\cdot\left(3^3+...+3^{47}\right)\)
có tân cùng là 0
Mà + thêm 13 nên có tận cùng là 3
a, \(A=1+2+2^2+2^3+...+2^{2005}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2005}\right)\)
\(2A=2+2^2+2^3+...+2^{2006}\)
\(A=2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2^{2006}-1\)
c, Số số hạng của A là : (2005 - 1) + 1 = 2005 (số hạng)
Nếu nhóm 3 số hạng vào 1 nhóm thì có : 2005 : 3 = 668 nhóm dư 1 số hạng
Ta có :
\(A=\left(1+2\right)+\left[\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2003}+2^{2004}+2^{2005}\right)\right]\)
\(A=3+\left[2^2.\left(1+2+2^2\right)+2^5.\left(1+2+2^2\right)+...+2^{2003}.\left(1+2+2^2\right)\right]\)
\(A=3+\left(2^2.7+2^5.7+...+2^{2003}.7\right)\)
\(\Rightarrow A\div7\) dư 3
d, Làm tương tự c
Mik làm 1 câu thui nhé
3.
a) 571999 có chữ số tận cùng là 3
b) 931999 có chữ số tận cùng là 7
tui cần
gấp nhé
a,3A=3+3^2+3^3+...+3^2020
=>3A-A=(3+3^2+3^2+3^3+...+3^2021)-(1+3+3^2+3^3+...+3^2020)
=>2A=3^2021-1=>A=\(\frac{3^{2021}-1}{2}\)