K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

Ta co 10^2018+5=100...0+5 (2018 số 0)=10...05 có tổng các số là 1+0+0+...+0+5=6

Mà 6 chia hết cho 3 Nên 10^2018+5 chia het cho 3

Mà 6 không chia hết cho 9 Nên 10^2018+5 không chia hết cho 9

21 tháng 10 2023

Bài 4:

a chia 11 dư 5 dạng tổng quát của a là:

\(a=11k+5\left(k\in N\right)\)

b chia 11 dư 6 dạng tổng quát của b là:
\(b=11k+6\left(k\in N\right)\)

Nên: \(a+b\)

\(=11k+5+11k+6\)

\(=\left(11k+11k\right)+\left(5+6\right)\)

\(=k\cdot\left(11+11\right)+11\)

\(=22k+11\)

\(=11\cdot\left(2k+1\right)\)

Mà: \(11\cdot\left(2k+1\right)\) ⋮ 11

\(\Rightarrow a+b\) ⋮ 11 

21 tháng 10 2023

Bài 1: Mình làm rồi nhé !

Bài 2:

a) Dạng tổng quát của A là:

\(a=36k+24\left(k\in N\right)\)

b) a chia hết cho 6 vì: 

Ta có: \(36k\) ⋮ 6 và 24 ⋮ 6

\(\Rightarrow a=36k+24\) ⋮ 6

c) a không chia hết cho 9 vì:

Ta có: \(36k\) ⋮ 9 và 24 không chia hết cho 9 

\(\Rightarrow a=36k+24\) không chia hết cho 9 

2 tháng 10 2023

Bài 3: 

a chia 36 dư 12 số đó có dạng \(a=36k+12\left(k\in N\right)\)

\(\Rightarrow a=4\left(9k+3\right)\) nên a chia hết cho 4

Mà: \(9k\) ⋮ 3 ⇒ \(9k+3\) không chia hết cho 3

Nên a không chia hết cho 3 

2 tháng 10 2023

Bài 4:

a) \(x\in B\left(7\right)\) \(\Rightarrow x\in\left\{0;7;14;21;28;35;42;49;...\right\}\)

Mà: \(x\le35\)

\(\Rightarrow x\in\left\{0;7;14;21;28;35\right\}\)

b) \(x\inƯ\left(18\right)\Rightarrow x\in\left\{1;2;3;6;9;18\right\}\)

Mà: \(4< x\le10\)

\(\Rightarrow x\in\left\{6;9\right\}\)

10 tháng 8 2022

?

 

14 tháng 10 2018

a, \(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{99}+3^{100}\right)\)

\(=\left[3\left(1+3\right)\right]+\left[3^3\left(1+3\right)\right]+...+\left[3^{99}\left(1+3\right)\right]\)

\(=3\cdot4+3^3\cdot4+....+3^{99}\cdot4\)

\(=4\left(3+3^3+...+3^{99}\right)\)

\(\Rightarrow B⋮4\)

b, Vì 3 chia hết cho 3

3chia hết cho 3

.

.

.

3100 chia hết cho 3

\(\Rightarrow B⋮3\)

c,\(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+2^4\right)+....+\left(3^{99}+3^{100}\right)\)

\(=12+\left[3^2\left(3+3^2\right)\right]+....+\left[3^{97}\left(3+3^2\right)\right]\)

\(=12+3^2\cdot12+....+3^{97}\cdot12\)

\(=12\left(1+3^2+...+3^{97}\right)\)

\(\Rightarrow B⋮12\)

4 tháng 7 2016

Các bạn trả lời giúp mình nhanh nhé, khó nhất là câu vì sao kìa. Thanks nhìu nha

NM
24 tháng 9 2021

\(\hept{\begin{cases}24\text{ chia hết cho 3}\\10\text{ không chia hết cho 3}\end{cases}}\) nên a không chia hết cho 3

\(\hept{\begin{cases}24\text{ chia hết cho 4}\\10\text{ không chia hết cho 4}\end{cases}}\)

 nên a không chia hết cho 4