Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên mặt phẳng cho n > = điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
Bài 5:
Giả sử tồn tại 7 số không thỏa mãn điều kiện đề bài. Không mất tính quát, ta coi rằng \(x_1< x_2< ...< x_7\)
Do 7 số đã cho là các số nguyên dương nên :
\(x_2\ge x_1+1\)
\(x_3+x_1\ge4x_2\ge4\left(x_1+1\right)\Rightarrow x_3\ge3x_1+4\)
\(x_4+x_1\ge4x_3\ge4\left(3x_1+4\right)\Rightarrow x_4\ge11x_1+16\)
\(x_5+x_1\ge4x_4\ge4\left(11x_1+16\right)\Rightarrow x_5\ge43x_1+64\)
\(x_6+x_1\ge4x_5\ge4\left(43x_1+64\right)\Rightarrow x_6\ge171x_1+256\)
\(x_7+x_1\ge4x_6\ge4\left(171x_1+256\right)\Rightarrow x_7\ge683x_1+1024\)
Do x1 là số nguyên dương nên \(x_1\ge1\Rightarrow x_7\ge683+1024=1707>1706\) (Vô lý)
Vậy nên phải tồn tại bộ ba số thỏa mãn yêu cầu của đề bài.
Gọi 5 số đó là a; b; c; d; e . ta có a+ b + c + d + e = 1
Không mất tính tổng quát, giả sử 0 < a < b < c < d < e
Nhận xét: c + d < \(\frac{2}{3}\). Vì nếu c + d > \(\frac{2}{3}\)
ta có: 2e > c + d > \(\frac{2}{3}\) => e > \(\frac{1}{3}\) => e + c + d > \(\frac{1}{3}\) + \(\frac{2}{3}\) = 1 . Mâu thuẫn với a + b + c + d + e = 1; và a; b; c; d; e không âm
Áp dụng bđt Cô si ta có: cd < \(\frac{1}{4}\)(c + d)2 => c.d < \(\frac{1}{9}\)
Mặt khác, 1 = a + b + c + d + e > a + 3b + e > 3b + e > 2.\(\sqrt{3be}\) => b.e < \(\left(\frac{1}{2\sqrt{3}}\right)^2=\frac{1}{12}\) < \(\frac{1}{9}\)
+) ta có: a.e < b.e < \(\frac{1}{12}\) < \(\frac{1}{9}\); b.c < c.d < \(\frac{1}{9}\); d.a < d.c < \(\frac{1}{9}\)
=> có thể sắp xếp 5 số a; b; c;d; e theo thứ tự như sau: a; e; b; c ; d đều thỏa mãn tích 2 số bất kì cạnh nhau không vượt quá \(\frac{1}{9}\)