Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $a+b+c+d=0$ thì:
$a+b+c=-d; b+c+d=-a; c+d+a=-b; d+a+b=-c$
$\Rightarrow \frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=-1$
Nếu $a+b+c+d\neq 0$ thì:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c+b+c+d+c+d+a+d+a+b}{d+a+b+c}=\frac{3(a+b+c+d)}{a+b+c+d}=3\)
Vậy giá trị của các tỉ số trên có thể bằng $-1$ hoặc $3$
Trừ 1 ở mỗi phân số ta đuợc :
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(=\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu : a+b+c+d\(\ne\)0
=> a=b=c=d
=> \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
Nếu a+b+c+d=0
=> +) a+b=-(c+a)
+) b+c=-(d+a)
+) c+d=-(a+b)
+) d+a=-(b+c)
=> M=(-1)+(-1)+(-1)+(-1)=-4
áp dụng t/ c dãy tỉ số = nhau ta có: \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)
\(\frac{2a+b+c+d}{a}=5\Rightarrow5a=2a+b+c+d\Leftrightarrow3a=b+c+d\Rightarrow a=\frac{b+c+d}{3}\)
\(\frac{a+2b+c+d}{b}=5\Rightarrow3b=a+c+d\Leftrightarrow3b=\frac{b+c+d}{3}+c+d\Leftrightarrow9b=b+c+d+3c+3d\Leftrightarrow8b=4c+4d\Leftrightarrow b=\frac{c+d}{2}\)
\(\Rightarrow a=\frac{\left(\frac{c+d}{2}+c+d\right)}{3}=\frac{3c+3d}{6}=\frac{c+d}{2}\Rightarrow a+b=\frac{2\left(c+d\right)}{2}=c+d\Rightarrow\frac{2c+2d+c+d}{\frac{c+d}{2}}=5\Leftrightarrow\frac{6\left(c+d\right)}{c+d}=5\Rightarrow6=5\)=> k tìm đc a,b,c,d thỏa mãn.
hoặc làm tiếp ta cũng có thể thấy:
\(\frac{a+b+2c+d}{c}=5\Rightarrow3c=a+b+d\Leftrightarrow3c-\frac{c+d}{2}-\frac{c+d}{2}-d=0\Leftrightarrow3c-c-d+d=0\Leftrightarrow2c=0\Leftrightarrow c=0\)
mà a,b,c,d điều kiện phải khác 0 => k có a,b,c,d thỏa mãn
Ta có : 2a + b + c+ d / a - 1 = a + 2b + c + d / b - 1 = a + b + 2c + d / c - 1 = a + b + c +2d / d - 1
=> a + b + c + d / a = a + b + c + d / b = a + b + c + d / c = a + b + c + d / d
Xét 2 trường hợp :
TH1: a + b + c + d = 0
=> a + b = - ( c + d ) ; b + c = - ( a + d ) ; c + d = - ( a + b )
Khi đó M = ( -1 ) . 4 = -4
TH2 : a + b + c + d khác 0
=> a = b = c = d
Khi đó M = 1 . 4 = 4
Vậy M = 4 hoặc M = - 4
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{b+c+a}\)
\(\Leftrightarrow\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{b+c+a}{d}\)
\(\Leftrightarrow\frac{b+c+d}{a}+1=\frac{a+c+d}{b}+1=\frac{a+b+d}{c}+1=\frac{b+c+a}{d}+1\)
\(\Leftrightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)
Xét \(a+b+c+d=0\) ta có :
\(a+b=-c-d;b+c=-a-d;c+d=-a-b;d+a=-b-c\)
\(\Rightarrow A=\frac{a+b}{-a-b}+\frac{b+c}{-b-c}+\frac{c+d}{-c-d}+\frac{d+a}{-b-c}=-1-1-1-1=-4\)
Xét \(a+b+c+d\ne0\) ta có : \(a=b=c=d\)
\(\Rightarrow M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)
Áp dụng TC của dãy tỉ số bằng nhau ,ta có :
\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c+b+c+d+c+d+a+d+a+b}{d+a+b+c}\)
\(=\frac{3a+3b+3c+3d}{a+b+c+d}=3\)
Vậy.....................
Tui nghĩ zậy , ko hiểu đề cho lém!