Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 + b2 + c2 < 2
<=> a2 + b2 + c2 < a+ b + c
<=> (a2 - a )+ (b2 - b )+ (c2 - c) < 0
<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0 (*)
Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1 vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0
tương tự b(b - 1) < 0; c(c -1) < 0
Vậy (*) => đpcm
Vì \(0\le a,b,c\le2\)nên:
\(abc+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)
\(\Leftrightarrow abc+2bc-abc+2ac-4c+2ab-4b-4a+8\ge0\)
\(\Leftrightarrow2bc+2ac+2ab-4\left(a+b+c\right)+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)-12+8\ge0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)\ge4\)
Do đó: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)\le3^2-4=5\)
(Dấu "="\(\Leftrightarrow\)(a,b,c) là các hoán vị của (0,1,2))
a)a<b
=>a+c<b+c(1)
c<d
=>b+c<b+d(2)
Từ 1 và 2 =>a+c<b+d
b)a<b
=>ac<bc(1)
c<d
=>bc<bd(2)
Từ 1 và 2 =>ac<bd
ko mất tính tổng quát ta giả sử a<b<c<d
+ a=1 thì hiển nhiên
+TH: a>1
a+d và b+c là các lũy thừa của 2 nên $a=2^{x}-mvàvàd=2^{y}+m$
a+d là lũy thừa của 2 nên x=y do đó $a=2^{x}-mvàvàd=2^{x}+m$
tương tự với b+c có $b=2^{y}-nvàvàc=2^{y}+n$
từ điều kiện a<b<c<d bạn có vô lý