Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{c+d+a}+1=\frac{c}{d+a+b}+1=\frac{d}{a+b+c}+1\)
\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{c+d+a}=\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{a+b+c}\)
Nếu a + b + c + d = 0
=> a + b = - c - d
b + c = - a - d
c + d = - b - a
d + a = - b - c
Khi đó \(P=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{d+a}+\frac{-\left(b+a\right)}{b+a}=\frac{-\left(b+c\right)}{b+c}\)
\(=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Nếu a + b + c + d \(\ne\)0
\(\Rightarrow\frac{1}{c+d}=\frac{1}{d+a}=\frac{1}{b+a}=\frac{1}{b+c}\)
\(\Rightarrow c+d=d+a=b+a=b+c\)
\(\Rightarrow a=b=c=d\)
Khi đó \(P=1+1+1+1=4\)
Vậy nếu a + b + c + d = 0 thì P = - 4
nếu a + b + c + d \(\ne\)0 thì P = 4
Phải sửa đề thành\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Ta có :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\Rightarrow a=b=c=d\)
\(\Rightarrow P=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}=\frac{a}{2a}.4=2\)
mình nói hướng làm cho bạn thôi nhé
nếu bạn đặt \(\frac{a}{b}\)= \(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{a}\)=k vào thay vào rùi sẽ ra
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)
\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\frac{3a+3b+3c+3d}{a+b+c+d}\)
\(=\frac{3\left(a+b+c+d\right)}{a+b+c+d}\)
\(=3\)
Vậy k = 3
Theo tính chất tỉ dãy số bằng nhau thì:
\(\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}=\frac{c+d+a-b}{b}=\frac{d+a+b-c}{c}=1\)
\(\Leftrightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)
\(\Rightarrow M\Leftrightarrow1+1+1+1=4\)
Ps: Cách mình nhanh hơn nè!
trừ mỗi tỉ lệ cho 1 ta được:
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{2a+b+c+d}{a}-\frac{a}{a}=\frac{a+2b+c+d}{b}-\frac{b}{b}=\frac{a+b+2c+d}{c}-\frac{c}{c}=\frac{a+b+c+2d}{d}-\frac{d}{d}\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
+Nếu a+b+c+d\(\ne\)0 thì a=b=c=d lúc đó
M=1+1+1+1=4
+Nếu a+b+c+d=0 thì a+b=-(c+d);b+c=-(d+a);c+d=-(a+b);d+a=-(b+c) lúc đó:
M=(-1)+(-1)+(-1)+(-1)=-4
\(\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{a+b+2c+d+a+b+c+2d}{c+d}=\frac{2a+2b+3c+3d}{c+d}\)
\(=\frac{2\left(a+b\right)}{c+d}+\frac{3\left(c+d\right)}{c+d}=2.\frac{a+b}{c+d}+3\)
\(\frac{2a+b+c+d}{a}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d+a+b+c+2d}{a+d}=\frac{3a+3d+2c+2b}{a+d}\)
\(=\frac{3\left(a+d\right)}{a+d}+\frac{2\left(b+c\right)}{a+d}=3+2.\frac{b+c}{a+d}\)
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{2a+b+c+d+a+2b+c+d}{a+b}=\frac{3a+3b+2c+2d}{a+b}\)
\(=\frac{3\left(a+b\right)}{a+b}+\frac{2\left(c+d\right)}{a+b}=3+\frac{c+d}{a+b}.2\)
\(\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+2b+c+d+a+b+2c+d}{b+c}=\frac{3b+3c+2a+2d}{b+c}\)
\(=\frac{3\left(b+c\right)}{b+c}+\frac{2\left(a+d\right)}{b+c}=3+\frac{a+d}{b+c}.2\)
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5\left(a+b+c+d\right)}{a+b+c+d}=5\)
\(\Rightarrow\frac{2a+b+c+d}{a}+\frac{a+2b+c+d}{b}+\frac{a+b+2c+d}{c}+\frac{a+b+c+2d}{d}=5.4=20\)
\(\Rightarrow3+\frac{a+b}{c+d}.2+3+\frac{b+c}{a+d}.2+3+\frac{c+d}{a+b}.2+3+\frac{d+a}{b+c}.2=20\)
\(\Rightarrow2.\left(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\right)=20-3-3-3-3\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{b+a}+\frac{d+a}{b+c}=8:2=4\)
vậy \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=4\)
mình nghĩ đề phải là P=\(\frac{a+b}{c+a}\)+\(\frac{b+c}{d+a}\)+\(\frac{c+d}{d+a}\)+\(\frac{d+a}{b+c}\)
P=\(\frac{a+b}{c+a}\)+\(\frac{b+c}{d+a}\)+\(\frac{c+d}{d+b}\)+\(\frac{d+a}{b+c}\)
=>P= \(\frac{a+b+b+c+c+d+d+a}{c+a+d+a+d+b+b+c}\)=\(\frac{2a+2b+2c}{2a+2b+2c}\)=\(\frac{2\left(a+b+c\right)}{2\left(a+b+c\right)}\)=1