K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 10 2020

Lời giải:

Ta có:

$Q=(a+b)(b+c)(c+a)-abc=(a+b+c)(ab+bc+ac)-abc-abc$

$=(a+b+c)(ab+bc+ac)-2abc$

Ta thấy:

$a+b+c\vdots 4$ nên $a+b+c$ chẵn. Do đó phải tồn tại ít nhất 1 trong 3 số $a,b,c$ là số chẵn.

$\Rightarrow abc\vdots 2$

$\Rightarrow 2abc\vdots 4(1)$

$a+b+c\vdots 4\Rightarrow (a+b+c)(ab+bc+ac)\vdots 4(2)$

Từ $(1);(2)\Rightarrow Q\vdots 4$

Ta có đpcm.

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

25 tháng 1 2018

Có : A = a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc-abc

= a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+abc

= (a^2b+ab^2+abc)+(b^2c+bc^2+abc)+(c^2a+ca^2+abc)-2abc

= (a+b+c).(ab+bc+ca)-2abc

Vì a+b+c chia hết cho 4 => (a+b+c).(ab+bc+Ca) chia hết cho 4 và a+b+c chẵn

a+b+c chẵn => trong 3 số a,b,c có 1 nhất 1 số chẵn vì nếu cả 3 số đều lẻ thì a+b+c lẻ

=> abc chia hết chi 2 => 2abc chia hết cho 4

=> A chia hết cho 4

=> ĐPCM

Tk mk nha

28 tháng 2 2018

thanks bạn nha :v

9 tháng 7 2019

1) 

+) a, b, c là các số nguyên tố lớn hơn 3

=> a, b, c sẽ có dạng 3k+1  hoặc 3k+2

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3

=> (a-b)(b-c)(c-a) chia hết cho 3 (1)

+) a,b,c là các số nguyên tố lớn hơn 3 

=> a, b, c là các số lẻ và không chia hết cho 4

=> a,b, c sẽ có dang: 4k+1; 4k+3

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4

th1: Cả 3 số chia hết cho 4

=> (a-b)(b-c)(c-a) chia hết cho 64   (2)

Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192  vì (64;3)=1

=> (a-b)(b-c)(c-a) chia hết cho 48

th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2

=> (a-b)(b-c)(c-a) chia hết cho 32  (3)

Từ (1) , (3) 

=> (a-b)(b-c)(c-a) chia hết cho 32.3=96  ( vì (3;32)=1)

=>  (a-b)(b-c)(c-a) chia hết cho 48

Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2

=>  (a-b)(b-c)(c-a) chia hết cho 16

Vì (16; 3)=1

=>  (a-b)(b-c)(c-a) chia hết cho 16.3=48

Như vậy với a,b,c là số nguyên tố lớn hơn 3

thì  (a-b)(b-c)(c-a) chia hết cho 48

9 tháng 6 2017

ta có a2014 và a2016 có cùng số dư khi chia cho 2 và 3 nên a2014 và a2016 có cùng số dư khi chia cho 6.

ta có b2015 và b2017 có cùng số dư khi chia cho 2 và 3 nên b2015 và b2017 có cùng số dư khi chia cho 6.

ta có c2016 và c2018 có cùng số dư khi chia cho 2 và 3 nên c2016 và c2018 có cùng số dư khi chia cho 6.

do đó a2014 + b2015 + c2016 và a2016 + b2017 + c2018 có cùng số dư khi chia cho 6 hay a2014 + b2015 + c2016 chia hết cho 6 thì a2016 + b2017 + c2018 cũng chia hết cho 6.