K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

Ta có: \(\frac{x}{5}=\frac{y}{2}=\frac{z}{7}\) => \(\frac{2x}{10}=\frac{y}{2}=\frac{z}{7}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

    \(\frac{2x}{10}=\frac{y}{2}=\frac{z}{7}=\frac{2x+y-z}{10+2-7}=\frac{53}{5}\)

=> \(\hept{\begin{cases}\frac{x}{5}=\frac{53}{5}\\\frac{y}{2}=\frac{53}{5}\\\frac{z}{7}=\frac{53}{5}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{53}{5}.5=53\\y=\frac{53}{5}.2=\frac{106}{5}\\z=\frac{53}{5}.7=\frac{371}{5}\end{cases}}\)

Vậy ...

15 tháng 8 2019

Ta có : x/5=y/2=z/7

=> 2x/10=y/2=z/7

= 2x +y -z / 10 + 2 - 7

=53/5

=> x= 53/5 . 5 = 53

     y=53/5 . 2 = 106/5

     z=53/5 . 7 = 371/5

`#040911`

Vì `3` số `x; y; z` tỉ lệ thuận với `4:7:10`

\(\Rightarrow \dfrac{x}{4} = \dfrac{y}{7} = \dfrac{z}{10} \)

\(\Rightarrow \dfrac{2x}{8} = \dfrac{3y}{21} = \dfrac{4z}{40} \)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{8} = \dfrac{3y}{21} = \dfrac{4z}{40} = \dfrac{2x + 3y + 4z}{8+21+40} = \dfrac{69}{69}=1\)

\(\Rightarrow \dfrac{x}{4} = \dfrac{y}{7} = \dfrac{z}{10} = 1\)

\(\Rightarrow x = 1.4 = 4 \\ y = 1.7 = 7 \\ z = 1.10 = 10\)

Vậy, \(x = 4; y = 7; z = 10.\)

22 tháng 8 2023

Giải nhanh hộ mik đk ạ

11 tháng 11 2019

hok giỏi cái ***

11 tháng 11 2019

kéo xuống hết nha!!!!

                                                                       

chịch ko em!!!!ớ ớ

12 tháng 10 2020

sai lớp :>>>

12 tháng 10 2020

Rõ ràng \(x=y=z=0\)   là nghiệm của hệ

Với \(xyz\ne0\), Ta có

\(y=\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)

\(z=\frac{3y^3}{y^4+y^2+1}\le\frac{3y^3}{3y^2}=y\)

\(x=\frac{4z^4}{z^6+z^4+z^2+1}\le\frac{4z^4}{4z^3}=z\)

Suy ra \(y\le x\le z\le y\Rightarrow x=y=z\)

Từ pt thứ nhất của hệ suy ra 

\(\frac{2x^2}{x^2+1}=x\Leftrightarrow2x=1=x^2\)( vì \(x\ne0\))\(\Leftrightarrow x=1\)

Vậy hệ pt có hai nghiệm \(\left(0,0,0\right)\)và \(\left(1,1,1\right)\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

13 tháng 6 2018

A = 2x2 - 6xy - 3xy - 6y - 2x2 + 8xy + 6y

   = - xy

  = \(\frac{2}{3}\)\(x\)\(\frac{3}{4}\)

  = \(\frac{1}{2}\)

mk đang bận mấy câu kia tương tự nha

16 tháng 11 2021

2x+y+3z=6(1)3x+4y−3z=4(2){2x+y+3z=6(1)3x+4y−3z=4(2)

Từ hệ phương điều kiện, ta có:

Lấy (1) + (2) ta được: 5x+5y= 10 ⇒⇒ x+y=2 ⇔⇔ y=2-x (3)

từ(1) ta suy ra y=6-3z-2x thế biểu thức vào phương trình (2) , ta được :

-5x-15z=-20 ⇔⇔ x+3z=4 ⇔⇔ z =43−x343−x3 (4)

thay (4) và (2) vào P ta được :

P= 2x+3y-4z = 2x +3.(2-x)- 4.(43−x343−x3) =2x+6-3x-163+4x3=x3+23163+4x3=x3+23

⇒⇒Min P ⇔⇔ x3x3 đạt GTNN mà 3>0 cố định ⇒⇒ Min P⇔⇔ x đạt GTNN

Mà x >= 0, x là số thực nên Min P = 2323 ,dấu "=" xảy ra khi và chỉ khi :

x=0

Ta có x + y = 2 ⇒⇒ y=2 ; z = 43−x343−x3 ⇒⇒ z =43