Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau em nên ghi đúng đề:
\(\frac{y+z+t-nx}{x}=\frac{z+t+x-ny}{y}=\frac{t+x+y-nz}{z}=\frac{x+y+z-nt}{t}\)
=> \(\frac{y+z+t}{x}-n=\frac{z+t+x}{y}-n=\frac{t+x+y}{z}-n=\frac{x+y+z}{t}-n\)
=> \(\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z}{t}=\frac{3x+3y+3z+3t}{x+y+z+t}=3\)
Mà x + y + z + t = 2020
=> \(\frac{2020-x}{x}=\frac{2020-y}{y}=\frac{2020-z}{z}=\frac{2020-t}{t}=3\)
=> \(\frac{2020}{x}-1=\frac{2020}{y}-1=\frac{2020}{z}-1=\frac{2020}{t}-1=3\)
=> \(\frac{2020}{x}-1+1=\frac{2020}{y}-1+1=\frac{2020}{z}-1+1=\frac{2020}{t}-1+1=3+1\)
=> \(\frac{2020}{x}=\frac{2020}{y}=\frac{2020}{z}=\frac{2020}{t}=4\)
=> \(x=y=z=t=505\)
=> \(P=x+2y-3z+t=505+2.505-3.505+505=505\)
=y+z+t/x - n.x/x=z+t+x/y - n.y/y=t+x+y/z - n.z/z=x+y+z/t - n.t/t
=y+z+t/x - n=z+t+x/y - n=t+x+y/z - n=x+y+z/t - n
=y+z+t/x=z+t+x/y=t+x+y/z=x+y+z/t
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
y+z+t/x=z+t+x/y=t+x+y/z=x+y+z/t=y+z+t+z+t+x+t+x+y+x+y+z/x+y+z+t=3.(x+y+z+t)/x+y+z+t=3
ok bạn tiếp tục làm được nhé cho mih nha
7a5 ddieemr danh