K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Ta có:

+) a2=3k=> abc chia hết cho 3=>abc-6bc chia hết cho 3 (k e N)

với TH ko số nào chia 3 dư 1

+) a bình : 3(dư 1)=>a2-b2=c2 trong đó c chia hết cho 3 nên abc-6bc vẫn như thé chia hết cho 3 

(ĐPCMA)

15 tháng 10 2021

Ai giúp gấp nhé:D

 

15 tháng 10 2021

Ta có : a2 + b2 = c2 + d2

a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) 2 nên là hợp số

Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d ) 

= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) 2

a + b + c + d 2 nên cũng là hợp số

11 tháng 3 2021

Số chính phương khi chia 3 chỉ dư 0 hoặc 1.

Trường hợp 1: 

\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)

Trường hợp 2: 

\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)

Trường hợp 3: 

\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )

Vậy có đpcm.

 

 

Giải:

Giả sử a không ⋮ 3 ➩ b không ⋮ 3

\(a^2 - 1 + b^2-1\) ⋮ 3

Mà \(a^2 +b^2\)2⋮ 3 (không có thể)

Vậy a và b ⋮ 3.

 

 

26 tháng 3 2018

Giả sử cả 3 số a; b; c đều không chia hết cho 3

=> a; b; c chia cho 3 dư 0 hoặc 1 

=> a2 ; b2 ; c2 chia cho 3 dư 1

=> a2 + b2 chia cho 3 dư 2  . Mà c2 chia cho 3 dư 1 nên a2 + b2 khác c2 ( trái với đề bài )

Vậy trong 3 số a; b; c có ít nhất 1 số chia hết cho 3

=> a.b.c chia hết cho 3

Ta luôn có 3ab chia hết cho 3

Vậy abc + 3ab chia hết cho 3  

24 tháng 10 2015

+) Chứng minh a3 - a luôn chia hết cho 2 và 3 với mọi số tự nhiên a: 

a- a = a.(a-1) = a.(a - 1).(a+1) 

Vì a- 1; a ; a+ 1 là 3 số tự nhiên liên tiếp nên tích (a-1).a.(a+1) luôn chia hết cho 2 và 3

+) khi đó , với mọi số tự nhiên a; b;c ta có: (a-a) + (b-b) + (c- c) luôn chia hết cho cả 2 và 3

=> (a+ b+ c3) - (a + b + c) luôn chia hết cho cả 2 và 3

=> (a+ b+ c3) - 2016  luôn chia hết cho cả 2 và 3. mà 2016 chia hết cho 2 và 3 nên (a+ b+ c3)  chia hết cho cả 2 và 3

Vậy...

3 tháng 4 2019

Giả sử cả 3 số a; b; c đều không chia hết cho 3

=> a; b; c chia cho 3 dư 0 hoặc 1 

=> a2 ; b; cchia cho 3 dư 1

=> a2 + bchia cho 3 dư 2. Mà c2 chia cho 3 dư 1 nên a2 + bkhác c(trái với đề bài)

Vậy trong 3 số a; b; c có ít nhất 1 số chia hết cho 3

=> a.b.c chia hết cho 3

Ta luôn có 3ab chia hết cho 3

Vậy abc + 3ab chia hết cho 3  

Có: a+5b chia hết cho 7

=> 2.(a+5b)\(⋮\) 7

 \(\Leftrightarrow2a+10b⋮7\)

 \(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )

\(\Leftrightarrow2a+3b\)  chia hết cho 7 

=> điều phải chứng minh

31 tháng 7 2020

Ta có : (a + b + c) \(⋮\)2

=> \(\left(a+b+c\right)^2⋮2\)

=> \(\left(a+b+c\right)\left(a+b+c\right)⋮2\)

=> \(\left(a+b+c\right).a+\left(a+b+c\right).b+\left(a+b+c\right).c\)

=> \(a^2+ab+ac+ab+b^2+bc+ac+bc+c^2\)

=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)⋮2\)

Vì \(2\left(ab+bc+ca\right)⋮2\)

=> \(a^2+b^2+c^2⋮2\left(\text{đpcm}\right)\)

31 tháng 7 2020

Bài làm:

Ta có: Vì a+b+c chia hết cho 2

=> a+b+c chẵn

Nên ta xét các TH sau:

+Nếu: Cả 3 số a,b,c đều chẵn

=> a2,b2,c2 đều chẵn

=> a2+b2+c2 chia hết cho 2

+Nếu: Chỉ có 1 số trong 3 số a,b,c chẵn

G/s a là số chẵn, b và c là 2 số lẻ

=> a2 chẵn và b2,c2 lẻ

=> a2+b2+c2 chẵn

=> đpcm

17 tháng 12 2015

Ta cóL

a+5b chia hết cho 7

=> 10(a+5b)=10a+50b chia hết cho 7

Mà 49b chia hết cho 7

=> 10a+50b-49b chia hết cho 7

=> 10a+b chia hết cho 7