Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thôi để giải luôn
Xét phương trình: \(x^3+ax^2+bx+c=0\left(1\right)\)
Đặt : \(f\left(x\right)=x^3+2x^2+bc+c\)
Từ giả thiết \(\left\{{}\begin{matrix}4a+c>8+2b\Rightarrow-8+4a-2b+c>0\Rightarrow f\left(-2\right)>0\\a+b+c< -1\Rightarrow1+a+b+c< 0\Rightarrow f\left(1\right)< 0\end{matrix}\right.\)
Do đó \(f\left(-2\right).f\left(1\right)< 0\) nên pt (1) có ít nhất một nghiệm trong \(\left(-2;1\right)\)
Ta nhận thấy:
\(\overset{lim}{x\rightarrow-\infty}f\left(x\right)=-\infty\) mà \(f\left(-2\right)>0\) nên phương trình (1) có ít nhất một nghiệm \(\alpha\in\left(-\infty;-2\right)\)
Tương tự: \(\overset{lim}{x\rightarrow+\infty}f\left(x\right)=+\infty\) mà \(f\left(1\right)< 0\) nên phương trình (1) có ít nhất một nghiệm \(\beta\in\left(1+\infty\right)\)
Như vậy phương trình đã cho có ít nhất 3 nghiệm thực phân biệt, mặt khác phương trình bậc 3 có tối đa 3 nghiệm nên pt trên sẽ có 3 nghiệm thực phân biệt.
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{ax^2+bx}-cx\right)=\lim\limits_{x\rightarrow+\infty}\frac{\left(a-c^2\right)x^2+bx}{\sqrt{ax^2+bx}+cx}=\lim\limits_{x\rightarrow+\infty}\frac{\left(a-c^2\right)x+b}{\sqrt{a+\frac{b}{x}}+c}\)
Để giới hạn đã cho là hữu hạn bằng -2
\(\Leftrightarrow\left\{{}\begin{matrix}c^2+a=18\\a-c^2=0\\\frac{b}{\sqrt{a}+c}=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=9\\c^2=9\\\frac{b}{3+c}=-2\end{matrix}\right.\) \(\left(c\ne-3\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a=9\\c=3\\c=-12\end{matrix}\right.\) \(\Rightarrow P=12\)
\(a=-2b-5c\Rightarrow a+2b=-5c\)
- Với \(c=0\Rightarrow a=-2b\Rightarrow-\dfrac{b}{a}=\dfrac{1}{2}\)
\(ax^2+bx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{b}{a}=\dfrac{1}{2}\in\left(0;1\right)\end{matrix}\right.\) (thỏa mãn)
- Với \(c\ne0\)
Hàm \(f\left(x\right)=ax^2+bx+c\) liên tục trên R
\(f\left(0\right)=c\) ;
\(f\left(\dfrac{1}{2}\right)=\dfrac{a}{4}+\dfrac{b}{2}+c=\dfrac{a+2b+4c}{4}=\dfrac{-5c+4c}{4}=-\dfrac{c}{4}\)
\(\Rightarrow f\left(0\right).f\left(\dfrac{1}{2}\right)=-\dfrac{c^2}{4}< 0;\forall c\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\dfrac{1}{2}\right)\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) do \(\left(0;\dfrac{1}{2}\right)\subset\left(0;1\right)\)