Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
Tương tự ...
\(\Rightarrow P\le\dfrac{1}{2\left(ab+b+1\right)}+\dfrac{1}{2\left(bc+c+1\right)}+\dfrac{1}{2\left(ca+a+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{c}{abc+bc+c}+\dfrac{1}{bc+c+1}+\dfrac{bc}{ca.bc+a.bc+bc}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{c}{1+bc+c}+\dfrac{1}{bc+c+1}+\dfrac{bc}{c+1+bc}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{c+1+bc}{1+bc+c}\right)=\dfrac{1}{2}\)
\(P_{max}=\dfrac{1}{2}\) khi \(a=b=c=1\)
Ta có : \(b=\dfrac{c+a}{2}\Rightarrow2b=c+a\Rightarrow a-b=b-c\)
Dó đó : \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}-\sqrt{c}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}-\sqrt{c}\right)}\right]\left(\sqrt{a}+\sqrt{c}\right)\)
\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{a-b}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)
\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}}{b-c}+\dfrac{\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\) Vì \(\left(a-b=b-c\right)\)
\(P=\left[\dfrac{\sqrt{a}-\sqrt{b}+\sqrt{b}-\sqrt{c}}{b-c}\right]\left(\sqrt{a}+\sqrt{c}\right)\)
\(P=\dfrac{\sqrt{a}-\sqrt{c}}{b-c}\left(\sqrt{a}+\sqrt{c}\right)\)
\(P=\dfrac{a-c}{a-b}=\dfrac{a-c}{a-\dfrac{a+c}{2}}=\dfrac{a-c}{\dfrac{2a-a-c}{2}}=\dfrac{a-c}{\dfrac{a-c}{2}}=2\)
Ta có: \(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{b}\)
\(\Rightarrow bc+ca=2ca\)
\(P=\dfrac{a+b}{2a-b}+\dfrac{c+b}{2c-b}=\dfrac{ac+bc}{2ca-bc}+\dfrac{ca+ab}{2ca-ab}\)
\(=\dfrac{ca+bc}{ab}+\dfrac{ca+ab}{bc}=\dfrac{c}{b}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{a}{c}=\dfrac{c+a}{b}+\dfrac{c}{a}+\dfrac{a}{c}\)
Ta có :
\(\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{4}{a+c}\left(\text{Svácxơ}\right)\)\(\Rightarrow c+a\ge2b\)
Áp dụng bđt cô si cho 2 số dương
\(\dfrac{c}{a}+\dfrac{a}{c}\ge2\sqrt{\dfrac{c}{a}.\dfrac{a}{c}}=2\)
\(\Rightarrow P\ge\dfrac{2b}{b}+2=4\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\)
=> \(\dfrac{1}{a+1}=1-\dfrac{1}{b+1}+1-\dfrac{1}{c+1}=\dfrac{b}{b+1}+\dfrac{c}{c+1}\ge2\sqrt{\dfrac{bc}{\left(b+1\right)\left(c+1\right)}}\)( AM-GM)
Tương tự ta có \(\dfrac{1}{b+1}\ge2\sqrt{\dfrac{ac}{\left(a+1\right)\left(c+1\right)}}\); \(\dfrac{1}{c+1}\ge2\sqrt{\dfrac{ab}{\left(a+1\right)\left(b+1\right)}}\)
Nhân vế với vế các bđt trên
=> \(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge8\sqrt{\dfrac{a^2b^2c^2}{\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2}}=8\cdot\dfrac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
=> \(1\le8abc\)<=> \(abc\le\dfrac{1}{8}\)
Đẳng thức xảy ra <=> a=b=c=1/2
Áp dụng bđt Svácxơ, ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Áp dụng, thay vào A, ta có:
\(A\le\text{Σ}\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{3}{2}\)
Dấu "="⇔\(a=b=c=1\)
Lời giải:
Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)
\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$
Bài làm :
Ta có :
\(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)
\(\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)
Dấu "=" xảy ra khi : a=b
Chứng minh tương tự như trên ; ta có :
\(\hept{\begin{cases}\frac{1}{b+c}\text{≤}\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\left(2\right)\\\frac{1}{c+a}\text{≤}\frac{1}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\left(3\right)\end{cases}}\)
Cộng vế với vế của (1) ; (2) ; (3) ; ta được :
\(A\text{≤}\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\text{=}\frac{3}{2}\)
Dấu "=" xảy ra khi ;
\(\hept{\begin{cases}a=b=c\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\end{cases}}\Leftrightarrow a=b=c=1\)
Vậy Max (A) = 3/2 khi a=b=c=1
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)
\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\dfrac{1}{\left(a+b+a+c\right)^2}\le\dfrac{1}{4\left(a+b\right)\left(a+c\right)}=\dfrac{1}{4\left(a^2+ab+bc+ca\right)}\le\dfrac{1}{64}\left(\dfrac{1}{a^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(\le\dfrac{1}{64}\left(\dfrac{1}{a^2}+\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=\dfrac{1}{64}\left(\dfrac{2}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)
Tương tự và cộng lại:
\(P\le\dfrac{1}{64}\left(\dfrac{4}{a^2}+\dfrac{4}{b^2}+\dfrac{4}{c^2}\right)=\dfrac{1}{16}.3=\dfrac{3}{16}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng bđt: \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(1\right)\)
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{1}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\)
\(\Rightarrow P\le\dfrac{1}{16}\left[\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)^2+\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)^2+\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)^2\right]\)\(\Rightarrow16P\le\dfrac{2}{\left(a+b\right)^2}+\dfrac{2}{\left(b+c\right)^2}+\dfrac{2}{\left(a+c\right)^2}+\dfrac{2}{\left(a+b\right)\left(b+c\right)}+\dfrac{2}{\left(a+b\right)\left(b+c\right)}+\dfrac{2}{\left(b+c\right)\left(c+a\right)}\)
Áp dụng: \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\) với a+b=x,b+c=y,c+a=z
\(\Rightarrow16P\le\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(b+c\right)^2}+\dfrac{4}{\left(c+a\right)^2}\)
Ta có: \(\dfrac{1}{\left(a+b\right)^2}\le4.16.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)(do (1))
\(\Rightarrow16P\le\dfrac{1}{4}.16\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\left(\dfrac{1}{b}+\dfrac{1}{c}\right)^2+\left(\dfrac{1}{c}+\dfrac{1}{a}\right)^2\right]=\dfrac{1}{4}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ca}\right)\le\dfrac{1}{4}.4.\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=3\)(do(2) và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\))
\(\Rightarrow P\le\dfrac{3}{16}\)
\(ĐTXR\Leftrightarrow a=b=c=1\)
1/a+1+1/b+1+1/c+1=21/a+1+1/b+1+1/c+1=2
=> 1/a+1=1−1/b+1+1−1/c+1=b/b+1+c/c+1≥2√bc(b+1)(c+1)1/a+1=1−1/b+1+1−1/c+1=b/b+1+c/c+1≥2bc(b+1)(c+1)( AM-GM)
Tương tự ta có 1b+1≥2√ac(a+1)(c+1)1b+1≥2ac(a+1)(c+1); 1c+1≥2√ab(a+1)(b+1)1c+1≥2ab(a+1)(b+1)
Nhân vế với vế các bđt trên
=> 1(a+1)(b+1)(c+1)≥8√a2b2c2(a+1)2(b+1)2(c+1)2=8⋅abc(a+1)(b+1)(c+1)1(a+1)(b+1)(c+1)≥8a2b2c2(a+1)2(b+1)2(c+1)2=8⋅abc(a+1)(b+1)(c+1)
=> 1≤8abc1≤8abc<=> abc≤18abc≤18
Đẳng thức xảy ra <=> a=b=c=1/2
bạn à bạn đã làm tắt rồi thì đừng có viết kiểu thế nhá nhìn khó lắm á
mình khuyên bạn là vô cái này : https://hoc24.vn/topic/cach-go-cong-thuc-toan-hoc-truc-quan.464/ tìm hiểu một chút là đc rồi nha