K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

A trường hợp 1 3 số có dạng 6k+1(thuộc N*)=>hiệu của 1 trong 3 số bằng 0chia hết cho 12 thỏa mãn nhé bạn 

B trường hợp 2 6k+5 (thuộc N*) =>hiệu của 3 số bằng 0 chả hết cho 12 thỏa mãn nhé bạn

K MÌNH NHA BẠN

5 tháng 2 2017

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)

.

5 tháng 2 2017

Truong hop 1: ba so co dang 6k+1(k thuoc n*)=> hieu cua 1 trong 3 so do bang 0 ( chia het cho 12)thoa man nhe cac ban 

Truong hop 2 :  3 so co dang 6k+5( k thuoc n*)=>hieu 1 trong 3 so do bang 0 (chia het cho 12) thoa man nhe cac ban 

Truong hop 3: 1 so co dang 6k+1 va 2 so con lai co dang 6k+5=>co 2 so co tong 6k+1+6k+5=12k+6(loai)

Cac ban thu kiem tra lai de xem dung 100%.mong cac ban ung ho cho minh thack

29 tháng 3 2016

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)

21 tháng 5 2018

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11;7;5 hoặc 1; mà 5+7=11=12 chia hết cho 12 nên nếu chia cho 4 số dư này thành 2 nhóm là ( 5;7 ) và ( 1;11 )thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên .

           Chúc bạn thi học kỳ 2 đc 10 điểm nhé♥

27 tháng 2 2016

xét ba trường hợp :

# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền

# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền 

# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)

BẠN THỬ KIỂM TRA LẠI ĐỀ BÀI XEM

26 tháng 12 2021

xét ba trường hợp :

# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền

# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền 

# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)

 

7 tháng 11 2014

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)

 

13 tháng 12 2016

ốc chos

26 tháng 3 2016

mình chỉ giải được câu 1 thôi nhé 

số nguyên tố là số >1 có 2 ước

gọi số đó là 12k+9

a=12k+9      mà        số nguyên tố là số >1    suy ra    a >9      achia hết cho 3

vậy không có số nguyên tố thõa mãn

19 tháng 3 2018

bù nốt cho bạn này nhé

số nguyên tố chia 12 dư 9=12k+9

mà 12k+9=3(4k+3)

từ đó suy ra số đó chia hết cho 3(có hơn 1 ước)

mà số đó nếu là 3 => 3 không chia hết cho 12 (loại)

vậy Không có số nguyên tố nào chia 12 dư 9